基于固态可调控超导量子电路的若干量子光学问题的研究
[Abstract]:Quantum optics is a study of the interaction between light and matter. It is a perfect combination of quantum field theory and physical optics. Its theoretical framework consists of a semiclassical theory involving only medium quantized semiclassical theory and a quantum theory of both medium and light field. Quantum optics has attracted many outstanding physicists from the date of its birth. The research system has also developed from the original natural atomic system to various new quantum optical systems, such as the quantum dot system, the NV color center system, the optical mechanical system, the superconducting quantum circuit system. Among them, the superconducting quantum system based on the Joseph Sen's section has been used to show many interesting quantum optical phenomena. As the core component of the superconducting circuit, the superconducting qubits can be tuned and controlled by the external parameters, and their behavior is similar to the artificial multilevel atom. Therefore, compared with the traditional cavity quantum electrodynamics, the circuit quantum electrodynamics system has a great tunability and can be used. It can be controlled to achieve flexible quantum optical phenomena through regulation and control. The research work of this paper is carried out by the system of superconducting circuits, and some innovative results have been obtained, mainly: 1. the strong coupling or super coupling interaction of a driven superconducting charge bit with a transmission line harmonic oscillator. In the circuit quantum electrodynamics system, we show the theoretical study of the quantum Zeno effect. By using the ornament state method, we predict the dynamic behavior of the decorated bits under two opposite projection measurements. For very frequent repeated measurements, we have shown that the survival probability of the initial state of the decorated bits has an exponent. The form, and its Zeno time is two orders of magnitude longer than the bare bit. For slow repeated measurements, we find that the detuning of the drive field has an important effect on the measurement dynamics of the bit, and under the appropriate system parameters, the Zeno effect appears in the non resonant coupling case. We emphasize that for a normal two level system, this The Zeno effect can not occur by.2. by driving an effective three level superconducting system composed of the strong coupling of the charge bit and the harmonic oscillator of the transmission line. We studied the electromagnetic induction transparency and the Autler-Townes splitting. In the ornament state framework and the steady state approximation, we studied the system's linearity to a weak detection signal. In response. By means of spectral line decomposition and the remaining constraints, we obtain the detailed conditions for the implementation of the electromagnetic induction transparency and Autler-Townes splitting of the ornament state system, and present a corresponding "phase diagram". Compared with the general bare system, these conditions have an additional dependence on the parameters of the bit harmonic subsystem. As a result, by tuning the Jose A Sen coupling energy of the bit, we present the transition from the electromagnetic induction to the Autler-Townes splitting. Our study again shows the advantage of the tunability of the solid-state superconducting quantum circuit.3.. We have studied the electromagnetically induced transparency and the Autler-Townes splitting of the four level V- superconducting system. The two superconducting charge bits of the superconducting quantum interferometer are composed of two superconducting charge bits. We give the eigenvalues and the general solutions of the eigenstates. We find that, for the absorption spectrum of the detection field, this four level system can display multiple dip, up to up to 3 dip, which breaks the traditional corresponding relationship: the N+1 level system shows up to N-1 dip. through the most. The four level system is decomposed into two three energy level subsystems. We give a reasonable explanation for this discovery. We also show that by the parameters of the tuning system, the absorption peak and the role of dip are a convertible.4. using a cyclic transition delta type three level superconducting qubit. We have studied the nonlinear multi wave. Mixing phenomenon. Due to the lack of the selection rule in this system, we have theoretically demonstrated that the three wave, four wave and five wave mixing can coexist for the first time. For only one superconducting bit, the efficiency of four wave mixing can be as high as 0.1%, which can be compared to the wave mixing efficiency of many previous atomic systems. We also show the three wave. The spectral lines of the five wave mixing signal have Autler-Townes splitting, and the coherent superposition of the quantum interference to the total signals - the three and five wave mixing signals - has an important effect on the use of a circular driven three level superconducting Joseph Sen system. We have studied a new type of phase and frequency sensitive microwave amplification. The reduction. Different from the previous linear theory of pure phase sensitive amplification, a new physical mechanism - the common effect of nonlinear wave mixing and wave interference - is proposed not only to amplify the signal but also to decrease, which is called interference nonlinear optics. We have shown that the output is tuned by tuning the relative phase. The signal has undergone a jump transition from a large gain to a deep suppression so that the system can act as a phase controlled amplitude modulator. In addition, by changing the frequency of the drive field, we show the continuous change of the output signal from the amplification to the decrease, thus the system can be filled as a frequency controlled amplitude modulator. The research opens up a new perspective for the wide application of microwave signals in quantum information science.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O431.2
【相似文献】
相关期刊论文 前10条
1 第十届全国量子光学学术报告会会务组 ,李洪才;第十届全国量子光学学术报告会纪要[J];量子光学学报;2002年S1期
2 ;中国科学院量子光学重点实验室[J];中国激光;2003年08期
3 ;第十一届全国量子光学学术会议在四川都江堰市胜利召开[J];量子光学学报;2004年S1期
4 胡艳芳;第十一届全国量子光学学术会议在四川都江堰召开[J];中国激光;2004年10期
5 ;第十二届全国量子光学学术报告会纪要[J];量子光学学报;2006年04期
6 ;第十三届全国量子光学学术报告会纪要[J];量子光学学报;2008年03期
7 ;第十四届全国量子光学学术报告会纪要[J];量子光学学报;2010年03期
8 ;第十四届全国量子光学学术报告会剪影[J];量子光学学报;2010年03期
9 滕永禄;;西德量子光学研究所近况[J];激光与光电子学进展;1983年12期
10 詹达三;美国量子光学专家纳杜西来华讲学访问[J];物理;1981年12期
相关会议论文 前10条
1 王雪华;;纳微结构中的量子光学(英文)[A];介观光学及其应用研讨会论文集[C];2007年
2 第十届全国量子光学学术报告会会务组;李洪才;;第十届全国量子光学学术报告会纪要[A];第十届全国量子光学学术报告会论文论文集[C];2002年
3 宋康宁;丛爽;;线性量子光学系统的控制策略[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年
4 ;第十一届全国量子光学学术会议在四川都江堰市胜利召开[A];第十一届全国量子光学学术会议论文摘要集[C];2004年
5 ;第十四届全国量子光学会议日程安排[A];第十四届全国量子光学学术报告会报告摘要集[C];2010年
6 ;第十三届全国量子光学学术报告会日程安排[A];第十三届全国量子光学学术报告会论文摘要集[C];2008年
7 张卫平;区泽宇;陈丽清;;基于相干原子系综的量子光学实验研究[A];第十五届全国原子与分子物理学术会议论文摘要集[C];2009年
8 杜春光;陈红艺;李师群;;约瑟夫森器件的量子光学与左手性质理论研究[A];第十二届全国量子光学学术会议论文摘要集[C];2006年
9 王大珩;周立伟;;光学,走向新的世纪[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
10 万明杰;王振林;;超薄介质层包裹金属核纳米复合颗粒的荧光增强机制[A];第十七届全国光散射学术会议摘要文集[C];2013年
相关重要报纸文章 前10条
1 记者 李爱珍;我省量子光学研究直达国际前沿[N];山西日报;2010年
2 记者 兰炎平;山大量子光学实验室立足世界科技前沿[N];山西日报;2000年
3 本报记者 孟国旺 贾清华;打造量子光学研究的一流科研基地[N];山西科技报;2012年
4 王海滨;山西跻身量子光学研究第一梯队[N];中国技术市场报;2010年
5 记者 冀卫平;山大量子光学实验室成为国家重点实验室[N];山西日报;2001年
6 记者 冀卫平;山西大学“量子光学与光量子器件”实验室进入“国家队”[N];山西日报;2002年
7 ;光电闪烁物理梦[N];山西日报;2003年
8 本报记者 刘何健;量子光学的春天[N];江苏科技报;2005年
9 侯红武 王世杰 李爱珍;彭X墀当选中国科学院院士[N];山西日报;2003年
10 ;山西省科学技术杰出贡献奖获奖人彭X墀简介[N];山西日报;2005年
相关博士学位论文 前5条
1 孙恒信;光的横向小位移的量子测量[D];山西大学;2014年
2 王明皓;量子光学系统中的几何相[D];山西大学;2015年
3 尹淼;克尔非线性黑体中原子异常量子光学效应的研究[D];华中科技大学;2010年
4 周艳丽;基于量子光学原理的量子计算与量子模拟的理论研究[D];国防科学技术大学;2012年
5 王福源;窄线宽非经典光源的制备及性质[D];中国科学技术大学;2009年
相关硕士学位论文 前8条
1 周海军;用于量子光学实验的Bell态探测器的设计调试[D];山西大学;2014年
2 李钦政;弱值和弱测量在量子光学精密测量中理论研究[D];上海交通大学;2015年
3 张虎;线性量子光学系统的反馈控制[D];电子科技大学;2013年
4 钟国宝;量子光学态的脊波变换[D];安徽大学;2013年
5 周倩倩;用于量子光学实验的宽带低噪声探测器研制及应用[D];山西大学;2010年
6 黄波;线性量子光学系统的LQG相干控制[D];电子科技大学;2011年
7 赵加强;腔QED中若干量子光学与量子信息问题的研究[D];曲阜师范大学;2005年
8 桂传友;变频率辐射场对量子系统非经典特性的调控[D];安徽大学;2011年
,本文编号:2154186
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2154186.html