分数阶偏微分方程数值算法及其在力学中的应用
[Abstract]:In recent years, fractional calculus theory and method have been widely used in various fields of science and engineering. Fractional calculus provides a powerful tool to describe the memory and inheritance of various materials and processes. This paper mainly deals with the numerical calculation method of several class of time fractional partial differential equations and the fractional order micro Some applications of integral theory and numerical method in mechanics. First, we propose two compact finite difference schemes for the two-dimensional nonlinear fractional order rediffusion equation, and give the theoretical analysis of the stability and convergence of the two schemes by Fourier analysis. The second, the fractional order Stokes of the generalized two order fluid under heating. First, we propose a numerical parameter estimation method to estimate the order of the Riemann-Liouville fractional derivative. Third, for the two-dimensional fractional Cable equation, we propose a space four order compact finite difference scheme, and give the theoretical proof of the stability and convergence by the Fu Liye analysis method. In the method of estimating the numerical parameter, the optimal estimation of the order of two fractional derivatives is given. Fourth. In the tumor thermotherapy experiment, we construct a time fractional thermal wave model of the double spherical tissue, and use the implicit difference method to give the numerical solution of the model. For the inverse problem, we propose a kind of heat therapy experiment data. In the nonlinear parameter estimation method, the optimal estimation of the unknown fractional derivative and relaxation time parameters is given. Finally, we establish a space fractional order anomalous diffusion model under the interaction of the concentration gradient and the potential gradient for the transport process of the sodium ion cross wall, and the numerical solution of the problem is obtained by the finite difference method. In the first chapter, we give a brief introduction to the historical development of fractional calculus. Secondly, we introduce several numerical methods for solving the partial differential equation of time fractional order and several fractional order involved in this paper. In the second chapter, we study the two-dimensional nonlinear fractional order reaction sub diffusion equation, in which the nonlinear source term g (U, x, y, t) has a two order continuous partial derivative (?) g (U, x, y, t) / (?) T2 and the U satisfies the condition, that is, first, we construct a kind of time first order, The compact finite difference scheme of space four order: on both sides of the equation, we use the definition of the Riemann-Liouville fractional integral, the four order compact difference scheme approximating the two order derivative and the trapezoid formula to approximate the nonlinear source term. Convergence. Numerical examples verify our theoretical analysis. Secondly, we use linear interpolation technique to construct a compact finite difference scheme of time two order, space four order, and use Fourier analysis to give the condition of stability and convergence of the compact finite difference scheme. Numerical examples verify the accuracy and effectiveness of the algorithm. In the third chapter, we study the first problem of the fractional order Stokes of the generalized two order fluid under heating. We propose a numerical method to estimate the order of the fractional derivative of the Riemann-Liouville. First, we use the implicit numerical method to solve the positive problem. For the inverse problem, we help the Digamma function to obtain the fractional sensitive equation. In addition, the Levenberg-Marquardt iterative algorithm is introduced to estimate the order of the unknown Riemann-Liouville fractional derivative. In order to verify the effectiveness of the algorithm, we give the solution of the estimation problem in two cases where the measured value contains random measurement error, and the influence of the selection of the initial parameter values on the estimated results is discussed. The numerical example shows that the numerical algorithm proposed by us is effective for estimating the order of the fractional derivative of Riemann-Liouville. In the fourth chapter, we study the two-dimensional fractional Cable equation: we study the estimation of the order of the two fractional derivatives in the two-dimensional fractional Cable equation. For the Yu Zheng problem, we propose a space four order compact. The finite difference scheme is presented and the theoretical proof of the stability and convergence of the compact finite difference scheme is given by Fourier analysis. For the inverse problem, we first obtain the fractional order sensitive matrix, and then introduce the Levenberg-Marquardt iterative method, and give the optimal estimation of the order of the two fractional derivative. The effect of the selection of initial parameter values on the estimation results. Numerical examples verify the effectiveness of our algorithm. In the fifth chapter, we construct a time fractional thermal wave model for the double layer spherical structure, which contains the heat conduction in the tumor (0 < R < < < < < R) and the healthy tissue (Rr < a). The equation is as follows: we use the implicit difference method, we give For the inverse problem, for the inverse problem, with the aid of the thermotherapy experimental data, we use the nonlinear parameter estimation method to give the optimal estimation of the unknown fractional derivative and relaxation time parameters, and discuss the influence of the selection of the initial parameter values on the estimation results. The time fractional heat wave model proposed by us is suitable for the heat conduction behavior in the simulated thermotherapy test, and the method of estimating the numerical parameters is effective for estimating the parameters in the fractional heat wave model in the composite medium. In the sixth chapter, based on the fractional order calculus theory, the fractional order Fick's law is used. Under the common action of concentration gradient and potential gradient, the anomalous transport of sodium ions across the intestinal wall has been established. An anomalous transport model with the fractional derivative of Riemann-Liouville space is established. The numerical solution of this problem is obtained by the finite difference method. We have studied the two layers of sodium ions inside and outside the cells during the transport of the intestinal wall. The concentration of the concentration and the average concentration of sodium ions at the capillaries change with time, and according to the different values of different parameters, describe the different trend of the change of sodium ion concentration, and discuss the change process of the sodium ion concentration curve and the sodium ion in the process of the change of the spatial fractional derivative in the process of taking different values. The research results show that the fractional order anomalous diffusion model is suitable for describing the trans intestinal transport process of sodium ions. The seventh chapter, we give a summary of this paper and the possible future research direction.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O241.82
【相似文献】
相关期刊论文 前10条
1 王德金;郑永爱;;分数阶混沌系统的延迟同步[J];动力学与控制学报;2010年04期
2 杨晨航,刘发旺;分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法[J];厦门大学学报(自然科学版);2005年06期
3 王发强;刘崇新;;分数阶临界混沌系统及电路实验的研究[J];物理学报;2006年08期
4 夏源;吴吉春;;分数阶对流——弥散方程的数值求解[J];南京大学学报(自然科学版);2007年04期
5 张隆阁;;一类参数不确定混沌系统的分数阶自适应同步[J];中国科技信息;2009年15期
6 陈世平;刘发旺;;一维分数阶渗透方程的数值模拟[J];高等学校计算数学学报;2010年04期
7 辛宝贵;陈通;刘艳芹;;一类分数阶混沌金融系统的复杂性演化研究[J];物理学报;2011年04期
8 黄睿晖;;分数阶微方程的迭代方法研究[J];长春理工大学学报;2011年06期
9 蒋晓芸,徐明瑜;分形介质分数阶反常守恒扩散模型及其解析解[J];山东大学学报(理学版);2003年05期
10 陈玉霞;高金峰;;一个新的分数阶混沌系统[J];郑州大学学报(理学版);2009年04期
相关会议论文 前10条
1 李西成;;经皮吸收的分数阶药物动力学模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 谢勇;;分数阶模型神经元的动力学行为及其同步[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年
3 张硕;于永光;王亚;;带有时滞和随机扰动的不确定分数阶混沌系统准同步[A];中国力学大会——2013论文摘要集[C];2013年
4 李常品;;分数阶动力学的若干关键问题及研究进展[A];中国力学大会——2013论文摘要集[C];2013年
5 李常品;;分数阶动力学简介[A];第三届海峡两岸动力学、振动与控制学术会议论文摘要集[C];2013年
6 蒋晓芸;徐明瑜;;时间依靠分数阶Schr銉dinger方程中的可动边界问题[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 王花;;分数阶混沌系统的同步在图像加密中的应用[A];第二届全国随机动力学学术会议摘要集与会议议程[C];2013年
8 王在华;;分数阶动力系统的若干问题[A];第三届全国动力学与控制青年学者研讨会论文摘要集[C];2009年
9 张硕;于永光;王莎;;带有时滞和随机扰动的分数阶混沌系统同步[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
10 李西成;;一个具有糊状区的分数阶可动边界问题的相似解研究[A];中国力学大会——2013论文摘要集[C];2013年
相关博士学位论文 前10条
1 陈善镇;两类空间分数阶偏微分方程模型有限差分逼近的若干研究[D];山东大学;2015年
2 任永强;油藏与二氧化碳埋存问题的数值模拟与不确定性量化分析以及分数阶微分方程的数值方法[D];山东大学;2015年
3 蒋敏;分数阶微分方程理论分析与应用问题的研究[D];电子科技大学;2015年
4 卜红霞;基于分数阶傅里叶域稀疏表征的CS-SAR成像理论与算法研究[D];北京理工大学;2015年
5 杨变霞;分数阶Laplace算子的谱理论及其在微分方程中的应用[D];兰州大学;2015年
6 邵晶;几类微分系统的定性理论及其应用[D];曲阜师范大学;2015年
7 方益;分数阶Yamabe问题的一些紧性结果[D];中国科学技术大学;2015年
8 王国涛;几类分数阶非线性微分方程解的存在理论及应用[D];西安电子科技大学;2014年
9 陈明华;分数阶微分方程的高阶算法及理论分析[D];兰州大学;2015年
10 孟伟;基于分数阶拓展算子的灰色预测模型[D];南京航空航天大学;2015年
相关硕士学位论文 前10条
1 黄志颖;非线性时间分数阶微分方程的数值解法[D];华南理工大学;2015年
2 赵九龙;基于分数阶微积分的三维图像去噪增强算法研究[D];宁夏大学;2015年
3 楚彩虹;单载波分数阶傅里叶域均衡系统及关键技术研究[D];郑州大学;2015年
4 全晓静;非线性分数阶积分方程的Adomian解法[D];宁夏大学;2015年
5 黄洁;非线性分数阶Volterra积分微分方程的小波数值解法[D];宁夏大学;2015年
6 庄峤;复合介质中时间分数阶热传导正逆问题及其应用研究[D];山东大学;2015年
7 高素娟;分数阶延迟偏微分方程的紧致有限差分方法[D];山东大学;2015年
8 赵珊珊;时—空分数阶扩散方程的快速算法以及MT-TSCR-FDE的快速数值解法[D];山东大学;2015年
9 王珍;分数阶奇异边值问题的研究[D];山东师范大学;2015年
10 冯静;一类分数阶奇异脉冲边值问题正解的存在性研究[D];山东师范大学;2015年
,本文编号:2156914
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2156914.html