短寿命气候污染物(SLCPs)的有效辐射强迫及对全球气候的影响研究

发布时间:2018-08-01 16:39
【摘要】:随着人类工业发展的突飞猛进,我们赖以生存的环境正在不断恶化,同时全球的气候也随之改变。如何减缓全球气候变化的速率,减少升温幅度,已经是人类面临的严峻问题之一。在控制空气中二氧化碳浓度的同时减排短寿命气候污染物(本文只考虑对流层臭氧、甲烷和黑碳气溶胶,简称SLCPs)是在短时间内减缓气候变化行之有效的办法之一。但各种气候污染物对温度的影响不同,且存在着相互作用,因此减排污染物最终会对未来气候产生怎样的影响,仍需要给予进一步的研究。本文利用国家气候中心第二代大气环流模式BCC_AGCM2.0.1与中国气象科学研究院气溶胶理化模式CUACE/Aero双向耦合所组成的气溶胶?气候耦合模式系统BCC_AGCM2.0.1_CUACE/Aero,在政府间气候变化专门委员会第五次评估报告(IPCC AR5)最新提出的有效辐射强迫(ERF)概念框架下,结合最新的观测资料与典型排放情景(RCPs),分别模拟研究短寿命气候污染物的有效辐射强迫及其对全球气候的影响。主要结论如下:(1)自工业革命以来对流层臭氧浓度变化的有效辐射强迫全球平均值为0.46 W/m2,并由此造成全球平均近地面气温上升0.36°C,同时全球平均地表水汽通量和降水量的变化均为0.02 mm/day。由于对流层臭氧浓度的变化使中高纬度地区云量均呈现较为明显的增加,而在40°N附近地区云量却显著的减少,这与地表水汽蒸发量的变化和气流的辐合与辐散有关。(2)自工业革命以来大气中甲烷浓度变化的有效辐射强迫为0.49 W/m2(其浓度的空间不均与性产生的不确定性小于2%),由此造成全球平均近地面气温上升0.31°C,且升温主要分布在南北半球中高纬度地区。同时甲烷浓度增加造成的全球平均地表水汽通量和降水量的变化均为0.02 mm/day。而地表水汽通量的变化和气流的辐合与辐散的变化使高纬度地区云量增加,而中低纬度地区云量则有所减小。(3)2010年到2050年间,在保持现有人为污染物排放水平不变的情况下(RCP8.5)二氧化碳和SLCPs二者的浓度同时变化造成的全球平均有效辐射强迫为2.03 W/m2,从而使全球平均近地面气温上升1.95℃。而在该排放情景下单独改变CO2或SLCPs的浓度产生的有效辐射强迫分别为1.74 W/m2和0.16 W/m2,造成地表升温分别为1.72℃和0.26℃。而不计经济成本大力减排的情况下(RCP2.6)到2050年单独改变SLCPs浓度的有效辐射强迫为-0.38 W/m2,由此造成的全球平均近地面气温变化为-0.2℃;在此基础上同时改变二氧化碳浓度的情况下,全球平均近地面气温在2050年将上升0.5℃。在充分考虑经济成本合理减排的情况下(RCP4.5),2050年,单独改变SLCPs浓度的有效辐射强迫为-0.22W/m2,由此造成的全球平均近地面气温变化为-0.04℃;而同时改变二氧化碳的浓度将会使全球平均近地面气温将上升1.08℃。两种减排情景下到2050年全球平均近地面气温增量明显减小。(4)RCP4.5可能最接近未来减排实际情况的路径,与RCP8.5相比,到2050年SLCPs浓度变化使全球平均近地面气温下降了0.46℃,在北半球中高纬度地区降温较显著。同时全球平均地表水汽通量和降水量的变化均为-0.02 mm/day。云量的变化主要分布在南北半球中高纬地区,这可能与地表水汽蒸发量的变化以及气流的辐合与辐散有关。在南北半球近赤道地区降水量的变化较显著,中高纬度地区降水量以减少为主,而热带大部分地区降水量则有所增加。
[Abstract]:With the rapid development of the human industry, the environment on which we live is deteriorating and the global climate changes. How to slow down the rate of global climate change and reduce the range of temperature has been one of the serious problems faced by human beings. To control the concentration of two carbon dioxide in the air and reduce the short life climate pollution at the same time. This article only considers tropospheric ozone, methane and black carbon aerosols, SLCPs) is one of the effective ways to mitigate climate change in a short time. However, the effects of various climate pollutants on temperature are different, and there are interactions, so how the emission of pollutants will eventually affect the future climate will still need to be given. This paper uses the second generation atmospheric circulation model BCC_AGCM2.0.1 of the National Climate Center and the aerosol? Climate coupling model system of the aerosol physical and chemical model CUACE/Aero of the China Academy of Meteorological Sciences (CMA), BCC_AGCM2.0.1_CUACE/Aero, in the fifth assessment report of the Intergovernmental Panel on climate change (IPCC AR5). In the framework of the newly proposed effective radiation forcing (ERF) concept, combined with the latest observation data and typical emission scenarios (RCPs), the effective radiation forcing of short life climate pollutants and their effects on the global climate are simulated respectively. The main conclusions are as follows: (1) the effective radiation forcing of tropospheric ozone concentration changes since the life of the industrial leather The average value of the ball is 0.46 W/m2, and the global average surface temperature rises by 0.36 degree C, and the global average surface water vapor flux and precipitation change are 0.02 mm/day. because of the change of troposphere ozone concentration, the cloud amount in the middle and high latitudes increases obviously, but the cloud amount in the vicinity of 40 degree N decreases significantly. This is related to the change of evaporation of surface water vapor and convergence and divergence of air flow. (2) the effective radiation forcing of methane concentration changes in the atmosphere since the industrial revolution is 0.49 W/m2 (the uncertainty of spatial heterogeneity and nature of its concentration is less than 2%), resulting in the global average near ground temperature rising by 0.31 degrees C, and the heating is mainly distributed in the north and the south. In the middle and high latitudes of the hemisphere, the global average surface water vapor flux and precipitation caused by the increase of methane concentration are all 0.02 mm/day. while the change of the surface water vapor flux and the change of the convergence and divergence of the air flow increase the cloud amount in the high latitudes, while the cloud amount in the middle and low latitudes decreases. (3) between 2010 and 2050, it is guaranteed. The global average effective radiation force caused by the simultaneous changes in the concentration of pollutant emission levels (RCP8.5) and SLCPs two is 2.03 W/m2, thus increasing the global average near ground temperature by 1.95 degrees centigrade. The surface temperature is 1.74 W/m2 and 0.16 W/m2, which causes the surface temperature to be 1.72 and 0.26, respectively. Without the economic cost, the effective radiation force of the SLCPs concentration by 2050 (RCP2.6) is -0.38 W/m2, and the global average near ground temperature change is -0.2 C; on this basis, the carbon dioxide concentration is changed at the same time. Under the circumstances, the global average near ground temperature will rise 0.5 degrees C in 2050. In full consideration of the reasonable economic cost of emission reduction (RCP4.5), in 2050, the effective radiation forcing of SLCPs concentration alone is -0.22W/m2, resulting in the global average near ground temperature change to -0.04 C; and the concentration of carbon dioxide will be changed at the same time. The average near ground temperature of the ball will rise by 1.08 degrees C. The global average near ground temperature increment in 2050 is obviously reduced by two kinds of emission reduction scenarios. (4) RCP4.5 may be closest to the path of future emission reduction. Compared with RCP8.5, the global average near surface gas temperature decreased by 0.46 degrees to the high latitude in the northern hemisphere, compared with the SLCPs concentration change in 2050. At the same time, the variation of the global average surface water vapor flux and precipitation is the change of -0.02 mm/day. cloud amount mainly in the middle and high latitudes of the northern and southern hemispheres, which may be related to the change of the evaporation of the surface water vapor and the convergence and divergence of the air flow. The decrease of precipitation is mainly in the area, while the precipitation in most tropical regions increases.
【学位授予单位】:兰州大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:X51;P461

【相似文献】

相关期刊论文 前10条

1 王喜红,石广玉;东亚地区人为硫酸盐的直接辐射强迫[J];高原气象;2001年03期

2 王喜红,石广玉;东亚地区云和地表反照率对硫酸盐直接辐射强迫的影响[J];气象学报;2002年06期

3 吴涧;刘红年;王卫国;刘罡;;硫酸盐直接辐射强迫的在线与固定转化率模拟方法的对比研究[J];热带气象学报;2005年06期

4 石广玉;大气微量气体的辐射强迫与温室气候效应[J];中国科学(B辑 化学 生命科学 地学);1991年07期

5 于秀兰,石广玉;平流层温度调整后的辐射强迫的简化计算[J];高原气象;2001年03期

6 王喜红,石广玉,马晓燕;东亚地区对流层人为硫酸盐辐射强迫及其温度响应[J];大气科学;2002年06期

7 罗云峰,周秀骥,李维亮;大气气溶胶辐射强迫及气候效应的研究现状[J];地球科学进展;1998年06期

8 杨树臣;高太长;刘磊;刘西川;;基于全天空红外测云系统的云辐射强迫研究方法[J];气象水文海洋仪器;2012年02期

9 周秀骥,李维亮,罗云峰;中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟[J];大气科学;1998年04期

10 黄晓璜;崔国民;华泽钊;徐家良;;用一维辐射传递方程计算二氧化碳的辐射强迫[J];上海理工大学学报;2013年06期

相关会议论文 前10条

1 沈志宝;成天涛;;中国西北大气沙尘辐射强迫特性的数值试验[A];中国颗粒学会2002年年会暨海峡两岸颗粒技术研讨会会议论文集[C];2002年

2 王志立;张华;郭品文;王在志;;碳类气溶胶的直接辐射强迫及其对东亚气候影响的模拟研究[A];中国气象学会2007年年会气候变化分会场论文集[C];2007年

3 张华;王志立;;碳类气溶胶的直接辐射强迫及其对东亚气候影响的模拟研究[A];第26届中国气象学会年会大气成分与天气气候及环境变化分会场论文集[C];2009年

4 陈林;石广玉;王标;张鹏;;基于卫星资料的中国陆地气溶胶直接辐射强迫研究[A];第十七届中国遥感大会摘要集[C];2010年

5 吴蓬萍;韩志伟;;中国夏季硫酸盐气溶胶间接辐射强迫的数值模拟研究[A];第十届全国气溶胶会议暨第六届海峡两岸气溶胶技术研讨会摘要集[C];2009年

6 曹龙;;气候系统对二氧化碳强迫和太阳辐射强迫的响应[A];创新驱动发展 提高气象灾害防御能力——S5应对气候变化、低碳发展与生态文明建设[C];2013年

7 苏婧;黄建平;;利用卫星资料及模式模拟对东亚沙尘云辐射强迫的研究[A];中国气象学会2007年年会大气成分观测、研究与预报分会场论文集[C];2007年

8 明镜;效存德;杜振彩;Mark Flanner;;中国西部雪冰中的黑碳及其辐射强迫[A];第七届全国优秀青年气象科技工作者学术研讨会论文集[C];2010年

9 郝增周;潘德炉;龚芳;;海洋气溶胶直接辐射强迫的卫星遥感研究初探[A];第十七届中国遥感大会摘要集[C];2010年

10 吴金秀;肖稳安;张华;;SF6气体的辐射强迫和全球增温潜能研究[A];中国气象学会2007年年会大气成分观测、研究与预报分会场论文集[C];2007年

相关博士学位论文 前3条

1 谢冰;短寿命气候污染物(SLCPs)的有效辐射强迫及对全球气候的影响研究[D];兰州大学;2016年

2 苏婧;中国西北地区沙尘气溶胶辐射强迫效应的研究[D];兰州大学;2010年

3 柳晶;中国地区气溶胶光学特性及辐射强迫的卫星遥感观测研究[D];南京信息工程大学;2008年

相关硕士学位论文 前10条

1 刘玉芝;大气二氧化碳的辐射强迫及其温室效应的饱和度[D];南京气象学院;2002年

2 王玉洁;通过卫星资料反演东亚中纬度地区沙尘云的辐射强迫[D];兰州大学;2006年

3 洪霞;亚热带典型植物幼苗对辐射强迫的高光谱响应研究[D];浙江农林大学;2011年

4 姚明桃;辐射强迫对中亚热带三种典型树种幼苗生理生态的影响[D];浙江农林大学;2011年

5 田华;中国中东部地区气溶胶辐射强迫及其气候效应的数值模拟[D];中国气象科学研究院;2004年

6 陈艳;中国西北干旱半干旱区沙尘气溶胶对云特性的影响及云的辐射强迫效应[D];兰州大学;2007年

7 沈钟平;中国地区硝酸盐气溶胶光学厚度和直接辐射强迫的模拟研究[D];中国气象科学研究院;2009年

8 马越界;利用星载云雷达资料研究青藏高原的云辐射强迫[D];兰州大学;2011年

9 马井会;黑碳和沙尘气溶胶光学特性及全球辐射强迫的模拟研究[D];南京信息工程大学;2007年

10 赵燃;北京区域大气气溶胶污染及其辐射强迫研究[D];兰州大学;2014年



本文编号:2158187

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2158187.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户17e6a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com