基于RNA-seq的丛枝菌根真菌Gigaspora rosea基因构成及其共生发育相关基因的分析
[Abstract]:Arbuscular mycorrhizal fungi (AMF) can form a unique mutualistic symbiotic with most of the roots of the earth - Arbuscular mycorrhiza (AM).AM can significantly improve the nutrition, water metabolism and resistance of the host plant. Therefore, it is of great significance to modern sustainable agriculture. The biological and genetic complexity of the specific living body (Obligate biotrophy) organisms greatly restricts the study of molecular biological mechanisms for its development. Although the publication of the model Rhizophagus irregularis data has opened the first door to our understanding of the complete picture of the genetic composition of AMF, AMF is an independent one. The ancient fungal evolutionary branch (Glomeromycota), which contains rich genetic diversity and ecophysiological diversity, is not yet known whether the characteristics of the R.irregularis group data represent the general characteristics of the whole AMF group. In order to understand the characteristics of the AMF genetic composition and explore it more comprehensively The molecular biological mechanism of symbiotic development, this study selects a mycorrhizal fungal species, Gigaspora rosea (Diversisporales), which has significant differences in genetic and physiological characteristics with the pattern species R.irregularis (Glomerales) as the research object, using two generation nucleic acid sequencing technology (RNA-sequencing) and related bioinformatics analysis techniques. The main results are as follows: 1. in view of the physiological characteristics of G.rosea, this study optimizes the relevant experimental methods and uses these methods to successfully prepare high quality and high throughput sequencing nuclear acid (RNA) samples representing various typical developmental stages and overcome the previous AMF molecular biology research. In particular, the problem of insufficient AMF nucleic acid content and poor quality that existed in large-scale omics research,.2. uses CLC genomics workbench software to classify read segment sequence (reads) and splice (de novo assembly) from high throughput sequencing (de novo assembly), and obtains 86332 non redundant G.rosea virtual transcriptional sequences, the average length 643bp. passes through. Compared with the Refseq protein database, only 15346 transcripts can be annotated into a known gene in the database, indicating a large number of family specific orphan genes in AMF (Lineage-specific orphan genes). Protein functional annotations (GO and KOG) and comparison with other different groups of fungi show that a large number of letters have been enriched in AMF. Signal transduction related genes, which suggest that their interaction with host plants may involve intensive signal exchange processes. The results of the global metabolic pathway (KEGG) analysis show that AMF still retain most of the primary metabolic genes, and the missing few metabolic genes may cause important physiological characteristics in the specific active nutrition of AMF.AMF. The deep annotation of related genes indicated that the gene composition of AMF had some distinct characteristics different from other groups of group fungi, which largely reflected their special ecophysiological characteristics and evolutionary advantages. The phylogenetic relationship based on multiple gene alignment (phylogenomics) clearly indicated that AMF and Mucor (Mucoromycot) INA) the fungal relationship was closer, but not the previously considered biuclear subboundary fungus.3. found that there were significant differences in the expression of G.rosea during the development of the root, including the redox process (oxidation-reductio), which was mainly involved in the redox process (oxidation-reductio). N process), protein hydrolysis (proteolysis), transmembrane transport (transmembrane transport) and other processes. By comparing the similarities and differences of the G.rosea transcriptome in the two species of host plants that are far distant, the expression of the G.rosea gene in different hosts shows uncommon consistency: nearly half of the genes appear. Similar expression patterns. This consistency indicates that G.rosea is likely to use a very conservative gene expression regulation strategy to achieve its infection and colonization of all host plants. In addition, more than 40 expression patterns are also found by comparison of the transcriptional data of R.irregularis, a pattern species that is far closer to the relationship. The conserved AMF gene: these genes are obviously up-regulated in different species of AMF and in different species of host plants. These show that the annotation of G.rosea core genes in the conservative expression pattern indicates that secretory protein (Secreted protein) mediated signal transduction, transport protein (Transporter) mediated nutrition exchange, fatty acid chain extension and repair are shown. The process of lipid synthesis mediated by related enzymes may play a very important role in the establishment of AM symbiosis. Under the condition that the data of AMF are still very limited, these results not only provide a large amount of genetic data for the future research of AMF gene function, but also for the internal and other Glomeromycota groups. Comparative genomics or transcriptome studies of fungi provide the possibility.
【学位授予单位】:华中农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q93
【相似文献】
相关期刊论文 前10条
1 王亚军;唐明;迪丽努尔;;定西柠条VA菌根真菌特征及种类研究[J];干旱地区农业研究;2006年03期
2 徐丽娟;刁志凯;李岩;刘润进;;菌根真菌的生理生态功能[J];应用生态学报;2012年01期
3 赵友春,马启明;山东省的菌根真菌及分布[J];生态学杂志;1990年06期
4 张美庆;王幼珊;黄磊;;我国北部的八种VA菌根真菌[J];真菌学报;1992年04期
5 刘营,孔繁翔,杨积晴;菌根真菌对环境污染物的降解、转化能力概述[J];上海环境科学;1998年02期
6 贺学礼,李斌;VA菌根真菌与植物相互选择性的研究[J];西北植物学报;1999年03期
7 李明,张灼,彭彦华;兰科菌根研究与应用[J];云南农业科技;2000年06期
8 宋勇春,冯固,李晓林;接种不同VA菌根真菌对红三叶草利用不同磷源的影响[J];生态学报;2001年09期
9 任嘉红,张晓刚;VA菌根真菌提高沙棘抗旱性机理的研究[J];晋东南师范专科学校学报;2002年05期
10 曾松荣,方白玉;VA菌根真菌研究概况[J];韶关学院学报(自然科学版);2002年12期
相关会议论文 前10条
1 褚群;石宁;冯固;;不同菌根真菌接种效应差异及相互作用[A];面向未来的土壤科学(中册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年
2 朱国胜;刘作易;喻子牛;桂阳;;一种新的兰科植物菌根真菌单菌丝团分离方法[A];2010年中国菌物学会学术年会论文摘要集[C];2010年
3 郭良栋;;菌根真菌与全球变化[A];中国菌物学会2009学术年会论文摘要集[C];2009年
4 方扬;张小平;王元元;Kristina Lindstrom;;丛枝菌根真菌的研究与应用[A];庆祝中国土壤学会成立60周年专刊[C];2005年
5 林先贵;冯有智;张华勇;陈瑞蕊;王俊华;张佳宝;褚海燕;;高通量基因测序研究长期不同施肥对我国北方潮土丛枝菌根真菌多样性的影响[A];面向未来的土壤科学(中册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年
6 陈丽娜;刘晓华;曹荷艳;吕英民;;丛枝菌根真菌在园艺植物中的应用[A];中国观赏园艺研究进展2012[C];2012年
7 彭思利;申鸿;郭涛;;接种丛枝菌根真菌对土壤水稳性团聚体特征的影响[A];第五次全国土壤生物和生物化学学术研讨会论文集[C];2009年
8 张涛;孙羽;田长彦;冯固;;丛枝菌根真菌对四种短命植物生长发育和种子生产的影响[A];中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(下)[C];2008年
9 冯固;张福锁;李晓林;张俊伶;;集约化农业生产体系中丛枝菌根真菌的作用与调控[A];第五次全国土壤生物和生物化学学术研讨会论文集[C];2009年
10 贺忠群;贺超兴;张志斌;邹志荣;;丛枝菌根真菌提高植物耐盐性研究进展[A];中国园艺学会第七届青年学术讨论会论文集[C];2006年
相关重要报纸文章 前2条
1 胡良惠;老果园冬改注意“新植病”[N];山西科技报;2003年
2 支勇平;我国黄土高原植被恢复和生态系统重建研究获新成果[N];中国绿色时报;2011年
相关博士学位论文 前10条
1 樊经纬;水肥亏缺和刈割对牧草生长和丛枝菌根真菌的影响[D];兰州大学;2015年
2 张中峰;菌根真菌对青冈栎幼苗耐旱性和土壤特性的影响及机理研究[D];南京林业大学;2015年
3 温祝桂;中国黄杉(Pseudotsuga sinensis)菌根真菌群落结构研究及其特异性共生菌株的鉴定[D];南京农业大学;2014年
4 乔旭;丛枝菌根真菌在植物种间互作中的调节机制[D];中国农业大学;2016年
5 唐年武;基于RNA-seq的丛枝菌根真菌Gigaspora rosea基因构成及其共生发育相关基因的分析[D];华中农业大学;2016年
6 盛敏;VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究[D];西北农林科技大学;2008年
7 刘毅;丛枝菌根真菌钙信号相关基因的研究[D];华中农业大学;2012年
8 董秀丽;丛枝菌根真菌的分离鉴定和生物学特性研究及分子探针的设计与应用[D];华中农业大学;2005年
9 范七君;丛枝菌根真菌及一氧化氮提高枳抗旱性及机理研究[D];华中农业大学;2011年
10 宋会兴;石灰土上丛枝菌根真菌多样性特征及其对适生种群生理生态特征的影响[D];西南大学;2007年
相关硕士学位论文 前10条
1 唐哲;蓝莓菌根真菌解磷特性及定殖特点分析[D];东北林业大学;2015年
2 刘灵;丛枝菌根真菌对丹参酚酸生物合成的影响[D];东北林业大学;2015年
3 赵兴宇;大兴安岭野生蓝莓菌根真菌分离及定殖分析[D];东北林业大学;2015年
4 江玲;黑麦草、丛枝菌根真菌对不同番茄品种Cd吸收、富集的影响[D];西南大学;2015年
5 冯国辉;丛枝菌根真菌对能源草柳枝稷生态适应性的研究[D];中国地质大学(北京);2015年
6 马雪亭;菌根真菌与石斛属药用植物地理分布的相关性研究[D];北京协和医学院;2015年
7 陈熠;海南岛常见植物根围巨孢囊目丛枝菌根真菌物种多样性研究[D];海南大学;2014年
8 李岚岚;海南香大蕉根际丛枝菌根真菌及菌根化蕉苗对枯萎病的防效研究[D];海南大学;2015年
9 张伟;海南红树林丛枝菌根真菌的多样性及抗盐菌株的初步筛选[D];海南大学;2014年
10 刘欢;不同丛枝菌根真菌对四种植物生长特性影响[D];甘肃农业大学;2016年
,本文编号:2169873
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2169873.html