大气压沿面介质阻挡放电等离子体特性研究
[Abstract]:Surface Dielectric Barrier Discharge (SDBD) plasma generation technology can produce a large and uniform plasma layer on the dielectric surface because of its small discharge space constraints, simple structure and fast dynamic response, avoiding the generation of arcs, high power density and variety. Various active particles, such as ozone (O3), oxygen (O), hydrogen peroxide (H2O2), hydroxyl (OH) and their excited state particles, have been widely used in aerodynamics, biomedicine, environmental protection and other fields, and have been the research hotspot in recent years. In the exploratory stage, the factors affecting the discharge characteristics are not regularly understood. Therefore, it is of great theoretical and engineering significance to study the characteristics of dielectric barrier discharge along the surface with different parameters for promoting its application. Based on the physical process and experimental results of discharge, the equivalent circuit models of lumped parameters of plasma actuator under the action of sine wave alternating current power supply and nanosecond pulse power supply are established respectively. The experiments and circuit simulation are carried out. True, the study of atmospheric surface dielectric barrier discharge mainly includes the following contents: The basic characteristics of surface dielectric barrier discharge under the action of nanosecond pulse power supply are systematically studied, and the electrode symmetry, back electrode packaging and symmetrical electrode power supply under the action of different repetition frequency of nanosecond pulse power supply are further analyzed. The effects of wiring modes (HV-GND and GND-HV) on the voltage-ampere characteristics, deposition energy, transfer charge, N2 (C3nu_B3_g) and N2 + (B2_u +X2_g +, 0-0, 391.4 nm) spectral intensity, N2 (C3_u) oscillation temperature and rotation temperature of surface dielectric barrier discharge (DBD) were investigated. Compared with the asymmetrical exciter, the symmetrical exciter has a higher discharge starting time, higher current value, deposition energy, transmission charge, N2 (C3_u) vibration temperature and rotational temperature, and emission spectrum intensity. Because of the polarity effect, the discharge initiation time of HV-GND is later than that of GND-HV, but it has higher peak current, deposition energy, transmission charge, N2 (C3_u) vibration temperature and rotation temperature. The voltage-ampere characteristics, discharge power and transmission charge, N2 (C3_u_B3_g) and N2 + (B2_U+X2_g+, 0-0, 391.4 nm) spectral line strength, N2 (C3nu) oscillation temperature and rotational temperature were investigated under sinusoidal wave power supply. The main conclusions are as follows: compared with the plasma characteristics of SDBD under nanosecond pulse power supply, the rotational temperature of N2 (C3nu) corresponding to SDBD under sinusoidal wave is higher, but the vibrational temperature of N2 (C3nu) is lower, and the discharge current amplitude is much lower. Under the same conditions, the emission spectra of nanosecond pulsed discharge current are the same. The increase of frequency is beneficial to the enhancement of discharge. The electrode symmetry of the actuator under sinusoidal wave power supply is good. The influence of back electrode packaging on discharge parameters is consistent with that of nanosecond pulsed discharge power supply. The parameters of SDBD discharge plasma corresponding to GND-HV power supply have little change. Based on the experimental platform of dielectric barrier discharge along the surface under the action of sinusoidal wave power supply, the voltammetric characteristics, discharge image, emission spectrum characteristics, N2 (C3_u) vibration temperature and rotational temperature, as well as the excitation and sum of nitrogen molecule are studied. The spatial distributions of N2 (C3_u_B3_g, 0-0, 337.1 nm), N2 + (B2_u +X2_g+, 0-0, 391.4 nm:) and Ar I (2P1_1S2, 750.39 nm) emission line strength, N2 (C3_u) vibration temperature and rotation temperature are further analyzed. The results show that the discharge intensity and uniformity increase obviously after the introduction of argon, a stable large area discharge plasma is produced, and the rotational temperature of N2 (C3_u) increases, which is conducive to increasing momentum transfer efficiency and airflow induced velocity. The dynamic temperature is the strongest at the center and decreases with the decrease of the distance to the edge of the plate; the change of N2 (C3_u) vibration temperature is opposite to the rotational temperature. In addition, with the increase of argon flow rate, the discharge intensity increases first and then decreases, and the rotational temperature of N2 (C3_u) increases. With the increase of tube spacing, discharge decreases, emission spectrum intensity, discharge power, electron excitation temperature and N2 (C3_u) rotation temperature decrease significantly, but N2 (C3_u) vibration temperature increases; with the increase of voltage amplitude and frequency, spectral line intensity increases, N2 (C_u) vibration temperature increases. 3_u) rotational temperature, discharge power and electron excitation temperature increase, but the effect on N2 (C3_u) vibrational temperature is relatively small. Based on the physical process of discharge and experimental results, plasma ionization under the action of sinusoidal wave power supply and nanosecond pulse power supply is established respectively. The lumped parameter equivalent circuit model of the daughter exciter is used to estimate the plasma geometry size by taking high-speed discharge images. With the help of matlab/simulink software and simultaneous Boltzmann equation solver, Kirchhoff voltage equation and electron continuity equation are solved to estimate the current, average electron density and electron temperature under the action of two power sources respectively. The main conclusions are as follows: using variable resistance to represent the process of plasma discharge, reducing the switching function, realizing the calculation of electron density and resistance, facilitating the impedance matching of the circuit, improving the efficiency of power supply. The simulation results show that the maximum average electron density and temperature can reach 1.01 *1016m-3 and 6.1eV, the minimum resistance is 0.5M, the capacitance reactance is 8.99G. The capacitance reactance decreases nonlinearly with the increase of current density, and the electron temperature increases slightly. The electron temperature and electron density are 2.7 *1018m-3 and 8.5eV, respectively, which are higher than those of the sinusoidal power supply. The slope of the power supply has an important effect on the discharge. With the increase of the voltage rise rate, the current of the first discharge increases, the discharge time is advanced, but the corresponding second discharge current is slightly reduced, and the decrease rate increases correspondingly with the second discharge current. The current of the first discharge decreases slightly when the amplitude of secondary discharge current increases.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O461;O53
【相似文献】
相关期刊论文 前10条
1 尹淑慧;;电晕放电与介质阻挡放电等离子体简介[J];现代物理知识;2006年02期
2 李钢;李轶明;徐燕骥;张翼;李汉明;聂超群;朱俊强;;介质阻挡放电等离子体对近壁区流场的控制的实验研究[J];物理学报;2009年06期
3 高树香 ,陈文静;混合气体放电等离子体电子温度的理论计算[J];电子器件;1987年01期
4 陈远喜;刘祖黎;;气体放电等离子体参量诊断实验[J];物理实验;1993年02期
5 李汉明;李英骏;毛灵涛;李钢;张翼;刘峰;王芳;聂超群;李玉同;张杰;;绝缘阻挡放电等离子体弦向温度分布研究[J];科技导报;2007年18期
6 谭笑;卢佳敏;刘欣宇;杨勇;刘大伟;卢新培;;高电压放电产生等离子体在人工降雨中的应用[J];高电压技术;2012年12期
7 李劲,王泽文,高秋华,李胜利;放电等离子体水处理技术中的放电问题[J];高电压技术;1997年02期
8 程钰锋;聂万胜;车学科;;临近空间介质阻挡放电等离子体气动激励效果的数值分析[J];高电压技术;2011年06期
9 李军;吴韦韦;宋慧敏;贾敏;金迪;;静止空气中重频脉冲火花放电等离子体的气动激励特性[J];高电压技术;2013年07期
10 卢新培,潘垣,张寒虹;水中脉冲放电等离子体通道特性及气泡破裂过程[J];物理学报;2002年08期
相关会议论文 前10条
1 赵书霞;王友年;;射频感应耦合放电等离子体模式跳变的混合模拟[A];第十四届全国等离子体科学技术会议暨第五届中国电推进技术学术研讨会会议摘要集[C];2009年
2 宋春莲;张芝涛;杨宪立;陈文艳;;放电等离子体转化秸秆制取单糖的机理[A];中国物理学会第十五届静电学术年会论文集[C];2009年
3 阎克平;金华;;流光放电等离子体在环保方面的应用[A];中国环境保护优秀论文集(2005)(下册)[C];2005年
4 闫克平;;流光放电等离子体在环保方面的应用[A];第十一届全国电除尘学术会议论文集[C];2005年
5 刘睿强;刘悦;Tagra Samir;刘倩;张向东;;低气压射频和脉冲射频氩气放电等离子体的比较[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年
6 林启富;倪国华;江贻满;刘卫;孟月东;;一种新型介质阻挡放电等离子体降解水中茜素红的研究[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年
7 赵海洋;刘克富;;脉冲放电等离子体污水处理可行性实验研究[A];上海市照明学会成立30周年庆典暨四直辖市照明科技论坛、长三角照明科技论坛、上海市照明学会2008年年会论文集[C];2008年
8 李传辉;刘文正;孙光亮;张蓉蓉;;水表面介质阻挡放电等离子体生成特性的研究[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年
9 蒲陆梅;李国琴;伏建明;虎玉森;;辉光放电等离子体对农药毒性的消除作用[A];甘肃省化学会第二十五届年会、第七届甘肃省中学化学教学经验交流会论文集[C];2007年
10 张宏;黄青;柯志刚;余增亮;;放电等离子体降解水体微囊藻毒素及其机理研究[A];中国化学会第28届学术年会第2分会场摘要集[C];2012年
相关重要报纸文章 前2条
1 记者 汪永安;科学岛发现蓝藻治理新方法[N];安徽日报;2014年
2 王慧敏;复旦学子实践创新点亮关注民生之灯[N];文汇报;2008年
相关博士学位论文 前10条
1 张婧;甲烷和甲醇在介质阻挡放电等离子体中的反应[D];大连理工大学;2015年
2 郝玲艳;大气压沿面介质阻挡放电等离子体特性研究[D];山东大学;2016年
3 薄拯;滑动弧放电等离子体处理挥发性有机化合物基础研究[D];浙江大学;2008年
4 吕晓桂;大体积均匀纳秒脉冲放电等离子体及制备碳纳米颗粒的研究[D];大连理工大学;2011年
5 王铁成;场地有机物污染土壤的脉冲放电等离子体修复方法和机理研究[D];大连理工大学;2013年
6 王慧娟;脉冲放电等离子体—流光光催化协同降解水中典型有机污染物[D];大连理工大学;2007年
7 姜楠;沿面—填充床复合放电等离子体及其协同催化降解苯的研究[D];大连理工大学;2014年
8 杜长明;滑动弧放电等离子体降解气相及液相中有机污染物的研究[D];浙江大学;2006年
9 王达望;新型大气压放电等离子体发生器及其在甲烷偶联方面的应用研究[D];大连理工大学;2006年
10 王蕾;辉光放电等离子体降解水中有机污染物与还原六价铬的研究[D];浙江大学;2008年
相关硕士学位论文 前10条
1 施志勇;脉冲放电等离子体协同复合型催化剂去除甲醛的研究[D];江西理工大学;2015年
2 王兆均;脉冲介质阻挡放电等离子体处理废水的研究[D];复旦大学;2013年
3 廖华;基于介质阻挡放电等离子体水处理机理及样机研究[D];重庆大学;2015年
4 荣少鹏;湿壁式介质阻挡放电等离子体对水中磺胺嘧啶的去除研究[D];南京大学;2014年
5 郭贺;脉冲放电等离子体—活性炭联合降解水体中有机污染物的研究[D];江苏大学;2016年
6 黄宏伟;C_2F_6、C_4F_8双频电容耦合等离子体特性研究[D];苏州大学;2010年
7 杨水蛟;气体放电等离子体在模拟废水降解中的应用研究[D];西北大学;2012年
8 文凤;大气压介质质阻挡放电等离子体处理印染废水的研究[D];东华大学;2013年
9 孟诺;沿面—填充床复合放电等离子体催化降解苯[D];大连理工大学;2010年
10 阮建军;脉冲放电等离子体治理恶臭废气技术研究[D];浙江大学;2005年
,本文编号:2199725
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2199725.html