眼外来源的少突胶质细胞参与斑马鱼视网膜髓鞘化以及眼动反应

发布时间:2018-08-24 08:15
【摘要】:绝大多数哺乳动物视网膜内是没有髓鞘的,少突胶质细胞异常地出现在眼中会在神经节细胞层形成白色或灰白色条纹状斑块。视网膜内出现髓鞘可能会导致一些视觉功能障碍,例如人视网膜内有髓鞘视神经纤维可能伴随着近视、弱视,其发生机理尚不清晰。虽然一些低等脊椎动物的视网膜内有髓鞘生成,但是视网膜内髓鞘形成的时空动态、少突胶质细胞的来源、髓鞘形成过程中少突胶质细胞的行为以及少突胶质细胞的功能并没有得到清晰地阐述。因此,我们着眼于上述几个方面,对斑马鱼视网膜内髓鞘展开研究。这将为深入了解视网膜内髓鞘的形成提供详细的信息。由于以往缺乏少突胶质细胞特异性标记的转基因动物品系,人们对于髓鞘的研究仅仅局限于通过免疫组化鉴定不同发育阶段的少突胶质细胞以及用电镜观察视网膜内髓鞘形成情况。斑马鱼视网膜内存在少突胶质细胞和髓鞘,并且具有多个标记髓鞘的转基因品系,使其成为研究视网膜内髓鞘发育的一个很好的脊椎动物模型。利用olig2转基因斑马鱼,我们可以实时地观察髓鞘形成的时空动态。我们发现在斑马鱼出生后的第28天,其视网膜内开始形成髓鞘。随着发育斑马鱼视网膜内的少突胶质细胞、神经节细胞的数目不断增加;少突胶质细胞的密度以及髓鞘碱性蛋白(MBP)的表达随发育不断增加,到出生后第3个月维持稳定;神经节细胞和少突胶质细胞数目的比例不断减少,到出生后第3个月维持稳定。关于视网膜内少突胶质细胞的来源问题,通过向鸡的第三脑室注射DiI染料,Ono等人发现视网膜内存在DiI阳性的少突胶质细胞,这提示了少突胶质细胞可能来自于眼球外部。然而,前人的实验并不能证明视网膜内的髓鞘是否全部来自于眼球外部。我们利用眼球翻转和眼球移植实验,直接证明了斑马鱼视网膜内的少突胶质细胞完全来自于眼球外部而非来自于视网膜内自身的干细胞。利用视神经移植,我们可以观察视网膜内单个少突胶质细胞的形态。我们发现不同年龄的少突胶质细胞表现出不同的行为:年轻的少突胶质细胞形成长度较长数目较少的结间体(internodes);成年的少突胶质细胞形成长度较短数目较多的结间体。年龄相关的少突胶质细胞行为学的改变依赖于少突胶质细胞的内在特征而非外在环境。尽管不同年龄的少突胶质细胞行为存在差异,他们包裹髓鞘的能力并没有明显改变。尽管有髓鞘包裹的轴突的直径随年龄的增长而增加,未髓鞘化的轴突的直径却和年龄无显著相关。与其他中枢神经系统不同,斑马鱼视网膜内的髓鞘呈松散的单圈包裹。轴突内径与轴突外径(轴突内径与髓鞘厚度之和)的比值维持在0.6-0.7。斑马鱼视网膜内髓鞘包裹的模式可能对维持视网膜光学透明性以及促进神经冲动地传导是十分重要的。利用斑马鱼眼动行为学实验以及溶血卵磷脂诱导的视网膜内脱髓鞘模型,我们发现斑马鱼视网膜内髓鞘对于斑马鱼眼动反应是有影响的。我们的研究结果表明,斑马鱼视网膜内的髓鞘形成起始于胚胎受精后28天;视网膜内所有的少突胶质细胞来源于眼球外部;不同的少突胶质细胞具有不同的行为,而这是由细胞的内在因素决定的;斑马鱼视网膜内髓鞘是有功能的。综上所述,本研究为了解视网膜内髓鞘以及其生理特性提供了更多的细节。
[Abstract]:In most mammals, there is no myelin sheath in the retina. The abnormal appearance of oligodendrocyte in the eye can form white or Gray Striped plaques in the ganglion cell layer. The presence of myelin sheath in the retina may lead to some visual impairment, such as myopia and amblyopia in the retina. Although myelination occurs in the retina of some lower vertebrates, the temporal and spatial dynamics of myelination, the origin of oligodendrocytes, the behavior of oligodendrocytes during myelination and the function of oligodendrocytes have not been clearly explained. This will provide detailed information on the formation of intraretinal myelin sheath in zebrafish. Due to the lack of oligodendrocyte-specific markers in transgenic animal strains, the study of myelin sheath is limited to the identification of different developmental stages by immunohistochemistry. The presence of oligodendrocytes and myelin sheaths in the retina of zebrafish and the presence of multiple transgenic strains of myelin markers make it a good vertebrate model for studying the development of intraretinal myelin sheaths. We found that myelin began to form in the retina of zebrafish on the 28th day after birth. With the development of oligodendrocytes in the retina of zebrafish, the number of ganglion cells increased; the density of oligodendrocytes and the expression of myelin basic protein (MBP) increased with development. The proportion of ganglion cells and oligodendrocytes decreased and remained stable until the third month after birth. With regard to the origin of oligodendrocytes in the retina, DiI dye was injected into the third ventricle of the chicken, Ono et al. found that there were DiI positive oligodendrocytes in the retina. It is suggested that oligodendrocytes may originate from the outside of the eyeball. However, previous studies do not prove whether all myelin sheaths in the retina originate from the outside of the eyeball. Intramembranous stem cells. Using optic nerve transplantation, we can observe the morphology of individual oligodendrocytes in the retina. We found that oligodendrocytes of different ages behave differently: young oligodendrocytes form longer internodes; adult oligodendrocytes form smaller internodes. Age-related changes in oligodendrocyte behavior depend on the intrinsic characteristics of oligodendrocyte rather than on the external environment. Despite differences in oligodendrocyte behavior at different ages, their ability to encapsulate myelin sheaths has not changed significantly. Although the diameter of myelin-encapsulated axons varies with age Unlike other central nervous systems, the myelin sheath in the retina of zebrafish is loosely wrapped in a single loop. The ratio of the inner diameter of the axon to the outer diameter of the axon (the sum of the inner diameter of the axon and the thickness of the myelin sheath) remains between 0.6 and 0.7. Formula 1 may be important for maintaining optical transparency of the retina and facilitating nerve impulsive conduction. Using zebrafish eye behavior experiments and hemolytic lecithin-induced intraretinal demyelination model, we found that intraretinal myelin sheath of zebrafish has an effect on zebrafish eye movement. Myelin formation in the retina of zebrafish begins 28 days after fertilization; all oligodendrocytes in the retina originate from the outside of the eyeball; different oligodendrocytes behave differently, which is determined by the intrinsic factors of the cells; and the myelin sheath in the retina of zebrafish is functional. The inner myelin sheath and its physiological characteristics provide more details.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q436

【相似文献】

相关期刊论文 前10条

1 何家全,蔡文琴,张可成;少突胶质细胞与神经元相互作用时神经元细胞内钙离子浓度的变化[J];第三军医大学学报;2001年07期

2 何家全,蔡文琴,张可成;少突胶质细胞对PC12细胞JAK2基因表达的影响及其意义[J];第三军医大学学报;2001年06期

3 何家全,蔡文琴,张可成;少突胶质细胞对PC12细胞GAP-43表达的影响[J];第三军医大学学报;2001年08期

4 王晗知;蔡文琴;肖岚;;少突胶质细胞发育分化的转录调控[J];生理科学进展;2009年04期

5 姚竹秀;王有琪;;家兔中枢神经系统少突胶质细胞的形态和分布[J];解剖学报;1964年02期

6 何平,沈馨亚,杨勤,汪洋,邱云芳,刘才栋;新生大鼠大脑少突胶质细胞系的分离纯化和定向分化培养[J];中国神经科学杂志;2001年01期

7 王艳霞;富赛里;陆佩华;;SOX蛋白与少突胶质细胞的发育[J];医学分子生物学杂志;2006年03期

8 于钰;索伦;吴强;;PCDHα在髓鞘形成和少突胶质细胞发育中的作用[J];动物学研究;2012年04期

9 杨光;李翠;杨文静;张溢凡;肖林;;MicroRNA调控少突胶质细胞分化的研究进展[J];生命科学;2013年03期

10 杨跃;L-和S-型髓磷脂相关糖蛋白(MAG)在成年大鼠前髓帆的少突胶质细胞单位表型中的不同表达[J];中国神经科学杂志;1999年03期

相关会议论文 前10条

1 符辉;;Tcf7l2对少突胶质细胞发育的影响[A];中国解剖学会2012年年会论文文摘汇编[C];2012年

2 肖岚;Devon Ric;Xinmin Li;;喹的平促进少突胶质细胞分化及髓鞘形成的细胞培养研究[A];2007年中国解剖学会第十届全国组织学与胚胎学青年学术研讨会论文摘要汇编[C];2007年

3 牛建钦;李涛;陈显军;黄南昕;王凌云;吴锡艳;肖岚;;星型胶质细胞连接蛋白43维持少突胶质细胞前体细胞池的作用研究[A];中国神经科学学会第十届全国学术会议论文摘要集[C];2013年

4 沈学锋;陈耀明;蔡同建;杜可军;骆文静;陈景元;;TOCP通过激活CDK5诱导鸡少突胶质细胞损害[A];中国毒理学会第五次全国学术大会论文集[C];2009年

5 付元山;;大鼠少突胶质前体细胞培养的初步研究[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年

6 仇玄;陈林;李琛;黄春霞;卢伟;杨姝;赵圆宇;师晓燕;张蕾;唐勇;;长期丰富生存环境对青年和老年雄性大鼠大脑海马结构内少突胶质细胞和毛细血管的影响[A];中国解剖学会2012年年会论文文摘汇编[C];2012年

7 梅峰;牛建钦;刘淑宝;肖岚;;转录因子Olig1和Olig2在少突胶质细胞分化调控中作用机制的新的认识[A];中国神经科学学会第十届全国学术会议论文摘要集[C];2013年

8 王凌云;李红丽;田衍平;汪云;牛建钦;肖岚;;RyR3介导ER钙释放参与少突胶质细胞髓鞘成熟的调控作用研究[A];中国解剖学会2012年年会论文文摘汇编[C];2012年

9 谢利娟;史婧奕;朱建幸;;新生大鼠少突胶质前体细胞的培养和分离纯化[A];第六届江浙沪儿科学术会议暨儿科学基础与临床研究进展学术班论文汇编[C];2009年

10 韦美;李成仁;肖岚;;DISC1在少突胶质细胞发育分化中的表达[A];中国解剖学会2012年年会论文文摘汇编[C];2012年

相关重要报纸文章 前2条

1 本报特约撰稿人 陆志城;又是基因惹的祸[N];医药经济报;2003年

2 任军慧;揭密“化疗脑”成因[N];医药经济报;2006年

相关硕士学位论文 前8条

1 平曼;大鼠少突胶质细胞的分离培养与定向诱导分化[D];河北医科大学;2012年

2 柯鑫;双酚A早期暴露对雄性大鼠成年后海马区少突胶质细胞和恐惧学习的影响[D];南昌大学;2015年

3 陈林;大鼠大脑白质及其内有髓神经纤维老年改变的侧别差异和少突胶质细胞老年改变的体视学研究[D];重庆医科大学;2009年

4 杨晖;少突胶质细胞体外培养纯化及鉴定、细胞体外缺氧模型建立[D];福建医科大学;2009年

5 李媛媛;SHP2调控少突胶质细胞分化研究[D];第二军医大学;2010年

6 王伟;Juxtanodin特异性抗体的制备与结构分析[D];第四军医大学;2010年

7 徐清;一个新的ERM家族分子的鉴定及对细胞形态的影响[D];第四军医大学;2009年

8 左世伦;阿司匹林促进神经干细胞向少突胶质细胞定向分化与成熟的实验研究[D];第四军医大学;2012年



本文编号:2200181

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2200181.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0d9a9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com