全球大气环流模式中平流层风场准两年振荡现象的模拟
[Abstract]:The quasi-biennial oscillation (QBO) of the stratospheric wind field in the tropics is an important dynamical process in the upper and middle atmosphere. The results show that the equatorial characteristic waves, including Kelvin waves, mixed Rossby-gravity waves, inertial gravity waves and small-scale convective gravity waves are important sources of momentum flux required for the QBO phenomenon. QBO has a wide range of effects. Through different processes, QBO can affect the polar vortex in the high latitude region and couple with the semi-annual oscillation (SAO) in the MLT region. At the same time, the ionospheric state near the equator is also affected by QBO. QBO observations have gone through a long time. Because of the limitation of detection methods, QBO model simulation is very important. QBO has been simulated by many atmospheric models (GCMs) and is in good agreement with observations. However, the global atmospheric circulation model (WACCM) There are several possible reasons for this problem. First, the model lacks the necessary gravity wave parameterization process, and QBO lacks the necessary driving force. (Xue et al. (2012) In previous work, the model was idealized by adding to the model. Inertial gravity spectroscopy has successfully simulated QBO. This idealized gravity wave parameterization is based on Lindzen's linearization theory and considers the influence of Coriolis force, but there are many shortcomings. In the first part of our work, we analyze the gravity wave fraction of radiosonde data near the equator. The quasi-monochromatic gravity waves extracted from the radiosonde data exhibit a superposition pattern of "double Gaussian spectra" along the positive and negative directions of the background wind, which we use as the basis for parameterization of the new inertial gravity waves. The phase velocity at the two peaks of the Gaussian distribution of the gravity wave actually represents the width of the phase velocity spectrum of the gravity wave, the magnitude of the two peaks and the Q. The amplitude of the BO wind field is proportional to the QBO period, and inversely proportional to the QBO period. The influence of the gravity waves in the East and west directions on the QBO amplitude is relatively independent, but they act on the QBO period together. The height of the two peaks of the gravity spectrum indicates the magnitude of the momentum flux carried by the gravity wave, which directly determines the speed of acceleration and deceleration of the wind field. The momentum flux provided by the inertial gravity wave can affect the significant range of the QBO wind field, and the stronger momentum flux can make the eastward QBO wind field extend downward to a lower height, and vice versa. Frequency on the time scale also has a significant effect on the QBO period, and the higher level annual oscillation, the half-year oscillation will also have a significant coupling with the QBO activity. Two is that the vertical resolution greater than 1 km in the WACCM model hampers the dynamics and thermal processes of the gravity wave traveling upward. The upward gravity wave may gradually break through saturation in each layer of the atmosphere before reaching the critical layer and stopping propagating. With the release of momentum flux, the rough vertical resolution of the model can not restore the proper stratified structure of the atmosphere, and the insufficient interaction between gravity waves and background results in the insufficient QBO driving force. In this study, we consider that simply increasing the convection parameterization has no significant effect on QBO excitation, but increasing the vertical resolution of the model can improve the momentum flux propagation efficiency of various upstream fluctuations, which can be simulated in the WACCM model by using this method alone. In the WACCM model, there are three main driving forces of QBO, namely, equatorial characteristic wave, convective gravity wave and inertial gravity wave. These waves can not be replaced by each other in the QBO driving process. Third, the current version of WACCM uses finite volume element (FV) as the basic unit of the model, while CAM5 mode. The spectral element dynamics unit (SE) used in the formula can effectively avoid the polar effect in the finite volume method and better support the atmospheric dynamics process. Since the WACCM model unit can not be replaced for the time being, further research will be carried out in the follow-up work. In view of the possible shortcomings of WACCM mode in QBO excitation process, three core objectives of this paper are to study the corresponding relationship between the QBO characteristics and the parameters of gravity waves in WACCM 4.0, and to set up appropriate inertial gravity wave parameterization. Simulate a QBO which is more consistent with the observation; analyze the parameterization process of various gravity waves in the model, and the necessity of the excitation of QBO by the resolution of the model.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:P433
【相似文献】
相关期刊论文 前10条
1 吴少平,易帆;三维可压大气中重力波波包非线性传播的数值模拟[J];中国科学E辑:技术科学;2002年02期
2 刘晓;徐寄遥;;重力波与不同背景风场之间的非线性相互作用[J];自然科学进展;2006年11期
3 余志豪;重力波浅谈[J];气象;1980年11期
4 吴津生,王宗皓,董双林;全球资料分析中重力波的重要性[J];气象学报;1982年02期
5 覃卫坚;寿绍文;王咏青;;大气对流层重力波研究进展[J];气象科技;2013年05期
6 王咏梅,王英鉴,徐寄遥;非线性重力波对中高层氢氧大气的影响[J];中国科学(A辑);2000年S1期
7 丁锋,万卫星,袁洪;耗散大气中风场对内重力波传播的影响[J];空间科学学报;2000年02期
8 王咏梅,徐寄遥,王英鉴;对流层上传重力波的非线性演化[J];地球物理学报;2001年02期
9 丁锋,万卫星,袁洪;耗散大气中水平不均匀风场对内重力波传播的影响[J];地球物理学报;2001年05期
10 岳显昌,易帆;下行重力波波包在可压大气中的传播[J];空间科学学报;2001年01期
相关会议论文 前10条
1 丁锋;万卫星;袁洪;;重力波风场滤波现象的射线跟踪研究[A];第九届全国日地空间物理学术讨论会论文摘要集[C];2000年
2 何裕金;易帆;;大气重力波观测的运动学检验[A];第十届全国日地空间物理学术讨论会论文摘要集[C];2003年
3 安英玉;;重力波特征的雷达观测与分析[A];第26届中国气象学会年会人工影响天气与大气物理学分会场论文集[C];2009年
4 安英玉;张云峰;张剑侠;;初春一次具有明显重力波特征的雷达观测与分析[A];第27届中国气象学会年会大气物理学与大气环境分会场论文集[C];2010年
5 马兰梦;张绍东;;对流层及低平流层重力波源谱的分析[A];中国地球物理学会第二十七届年会论文集[C];2011年
6 岳显昌;易帆;;有限振幅重力波在可压大气中的非线性传播[A];第十届全国日地空间物理学术讨论会论文摘要集[C];2003年
7 黄春明;张绍东;易帆;;波状扰动激发重力波波包的能量转换特性研究[A];第十届全国日地空间物理学术讨论会论文摘要集[C];2003年
8 徐寄遥;;二维大气光化学-动力学耦合的重力波模式[A];第十一届全国日地空间物理学术讨论会论文摘要集[C];2005年
9 刘晓;徐寄遥;马瑞平;;时间分裂法在重力波非线性传播数值模拟中的应用[A];第十一届全国日地空间物理学术讨论会论文摘要集[C];2005年
10 涂翠;胡雄;;大气重力波成像观测事件分析[A];第十四届全国日地空间物理学术研讨会论文集[C];2011年
相关重要报纸文章 前2条
1 单久;当心气象官能症[N];人民政协报;2002年
2 南京医科大学公共卫生学院教授 姜允申;气象官能症[N];健康报;2002年
相关博士学位论文 前10条
1 丁锋;背景风场影响下大气重力波的传播特性研究[D];中国科学院研究生院(武汉物理与数学研究所);2001年
2 丁霞;对流激发重力波及波流相互作用研究[D];武汉大学;2011年
3 吴建飞;热带气旋重力波的激发和传播机制研究[D];中国科学技术大学;2016年
4 韩於利;中高层大气测温测风激光雷达研制及重力波观测[D];中国科学技术大学;2016年
5 帅晶;全球重力波活动的SABER/TIMED观测研究[D];武汉大学;2013年
6 徐昕;方向性切变基流经过三维圆钟地形激发的重力波动力学研究[D];南京大学;2014年
7 巴金;激光雷达中间层顶重力波垂直输送观测研究[D];中国科学院国家空间科学中心;2017年
8 王翠梅;利用地基气辉观测对中层顶区大气重力波以及Na层气辉辐射特性的研究[D];中国科学院国家空间科学中心;2017年
9 于超;全球大气环流模式中平流层风场准两年振荡现象的模拟[D];中国科学技术大学;2017年
10 吴少平;中高层大气中三维重力波非线性传播的数值研究[D];中国科学院研究生院(武汉物理与数学研究所);2002年
相关硕士学位论文 前10条
1 汪亚冲;辨明大洋海啸于中性粘滞大气层的扰动响应分析[D];南京航空航天大学;2014年
2 魏栋;重力波过程中平流层对流层交换的研究[D];兰州大学;2015年
3 宫明晓;夏季华南地区深对流活动对平流层大气重力波的影响研究[D];中国海洋大学;2015年
4 王宇虹;次网格地形重力波参数化方案在青藏高原的应用及数值模拟研究[D];中国气象科学研究院;2016年
5 严志玉;海啸所引发的大气重力波在电离层的扰动响应研究[D];南京航空航天大学;2016年
6 余文宝;大气重力波的数值模拟和波谱分析[D];中国科学技术大学;2009年
7 王永;重力波非线性相互作用和暴雨[D];南京信息工程大学;2005年
8 李晓青;渤海南部次重力波混合的初步研究[D];中国海洋大学;2006年
9 王雪莲;利用高分辨探空资料分析热带下平流层重力波活动[D];南京信息工程大学;2006年
10 张灵杰;青藏高原上空重力波的观测和模拟分析[D];中国气象科学研究院;2010年
,本文编号:2203296
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2203296.html