广州地区气候变化与城市扩张背景下城市热环境模拟方法研究与应用

发布时间:2018-08-27 14:30
【摘要】:城市热环境是城市生态环境的重要组成部分,城镇化在空间上体现为自然景观被城市景观替代的过程,城市持续扩张和自然绿地面积减少引发城市生态环境恶化,尤其是城市热环境恶化,使得人居环境品质降低和建筑空调能耗增大的问题越来越严峻。建立气候变化和城市扩张背景下的城市热环境模拟方法,准确预测不同城市发展情景下的热环境分布格局,对实现热环境格局优化的城市空间扩张策略和城市生态空间构建具有重要意义。本研究建立了基于精细化土地利用数据的中尺度气候模拟软件WRF(Weather Research and Forecasting Model)耦合单层城市冠层模型UCM(Urban Canopy Model)模拟方法,多学科结合的开展了城镇化和气候变化双重背景下城市热环境格局模拟预测研究。首先,通过对精细化土地利用数据的提取,物理过程参数化方案的确定和UCM内城市参数的设定三部分内容的研究,建立基于精细化土地利用数据的WRF耦合UCM的热环境模拟方法。对比2-m空气温度、10-m风速等热环境参数的模拟结果与观测结果,二者具有较好的一致性,验证了所建立的模拟方法用于城市热环境模拟的可靠性。其次,引入元胞自动机-马尔科夫链模型建立城市扩张预测模型,建立了基于区域约束条件下的城市沿沿南北方向和东西方向以高、中、低密度扩张的6个城市扩张情景。同时模拟了基于区域约束条件的广州沿南北方向和东西方向以高、中、低密度扩张生成的6个城市理想扩张情景的热环境分布格局,实现了城市用地扩张下城市不同建设密度等多约束条件下的城市热环境模拟并提出不同情景下基于热环境优化的城市空间发展格局策略。第三,模拟预测未来气候变化背景下城市热环境水平。运用全球模式MIROC_4.0Hires嵌套WRF/UCM进行动力降尺度模拟,预估了IPCC中SRES A1B排放情景下2032年的广州地区城市热环境。模拟结果表明广州地区2032年的日间温度较2012年升高最高约2℃,且城市空气温度空间分布特征发生变化。最后,构建气候变化和城市扩张双重背景下城市热环境模拟体系。模拟预测了城市扩张和气候变化双重背景下2032年广州分别沿南北方向和东西方向以高、中、低三种建设强度扩张,共6个情景下热环境水平,提出相应的城市空间发展的应对策略。
[Abstract]:The urban thermal environment is an important part of the urban ecological environment. Urbanization is the process of the natural landscape being replaced by the urban landscape in space. The sustainable expansion of the city and the reduction of the natural green space area lead to the deterioration of the urban ecological environment. Especially, the deterioration of urban thermal environment makes the quality of residential environment lower and the energy consumption of building air conditioning more and more serious. In order to accurately predict the distribution pattern of urban thermal environment in different urban development scenarios, a simulation method of urban thermal environment is established in the context of climate change and urban expansion. It is of great significance for the urban space expansion strategy and the urban ecological space construction to realize the optimization of the thermal environment pattern. In this study, a mesoscale climate simulation software WRF (Weather Research and Forecasting Model) coupled with a single-layer urban canopy model (UCM (Urban Canopy Model) was established based on refined land use data. The simulation and prediction of the urban thermal environment pattern under the dual background of urbanization and climate change were carried out. Firstly, the thermal environment simulation method of WRF coupled UCM based on refined land use data is established by studying the extraction of refined land use data, the determination of physical process parameterization scheme and the setting of urban parameters in UCM. The simulation results of 2-m air temperature and 10-m wind speed are in good agreement with the observed results. The reliability of the established simulation method for urban thermal environment simulation is verified. Secondly, the cellular automator-Markov chain model is introduced to establish the prediction model of urban expansion, and six urban expansion scenarios with high, middle and low density expansion along the north-south direction and east-west direction under the condition of regional constraints are established. At the same time, the thermal environment distribution pattern of 6 ideal urban expansion scenarios generated by high, middle and low density expansion along the north-south direction and east-west direction of Guangzhou is simulated based on the regional constraints. The simulation of urban thermal environment under the condition of different density of urban construction under the condition of urban land expansion is realized, and the strategy of urban spatial development based on optimization of thermal environment under different scenarios is put forward. Third, simulate and predict the urban thermal environment level under the background of future climate change. The dynamic downscaling simulation of the global model MIROC_4.0Hires nested WRF/UCM was used to predict the urban thermal environment in Guangzhou in 2032 under the SRES A1B emission scenario in IPCC. The simulation results show that the daytime temperature of Guangzhou in 2032 is about 2 鈩,

本文编号:2207564

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2207564.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c85e4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com