声波对球形粒子的声辐射力研究
[Abstract]:With the development of modern science and technology, the demand for non-contact manipulation of microparticles is becoming more and more urgent, especially in biomedical and industrial fields. The tiny particles in the sound field will be affected by their sound radiation force, and under certain conditions, the particles will be stabilized in the special space of the sound field. Using the sound radiation force, the operation and capture of the particles can be realized. Therefore, the use of the gradient of sound field and the interaction between particles can realize cell screening, drug delivery, acoustic suspension and other applications, which has an important research significance in biomedical and material science. In this paper, two theoretical methods are used to study the characteristics of acoustic radiation force acting on spherical particles. In the first chapter, the theoretical research background and practical application related to acoustic radiation force are reviewed, the recent research contents and progress of acoustic radiation force are introduced, and the main work of this paper is summarized. In the second chapter, the geometric acoustics approximation method is introduced, by which the acoustic radiation force characteristics of microspheres in Gao Si sound field are studied, and the influence of sound attenuation in particles on two-dimensional acoustic radiation force is considered. The conditions under which the sound well phenomenon is produced are analyzed, and the effects of particle initial position and particle size on the sound radiation force are discussed. The results show that when the particle is in some specific position it can be subjected to the action of acoustic trap force and considering attenuation does not affect the trapping property of acoustic tweezers but only its capture ability. In chapter 3, based on the geometric acoustics theory, a model of radiation force on a double-layer sphere is proposed. The effects of the acoustic properties of the spherical shell thickness of the double-layer sphere on the position and size of the sound potential well are discussed in detail. The theoretical model of acoustic radiation force which is more suitable for practical application is given. In chapter 4, based on the method of geometric acoustic approximation, a model of sound radiation force on microspheres in spherical focusing sound field is proposed, and the influence of the parameters of focusing sound field on the sound radiation force of spherical particles is analyzed. The results show that the conventional spherical focusing sound source can also capture the particle sphere in three dimensions. In the fifth chapter, the scattering theory of sound field is introduced, and the scattering effect of various boundary conditions on sound field is analyzed and discussed. At the same time, by using the method of finite series expansion, Gao Si focused sound wave is expanded according to spherical function. In this paper, the sound radiation force function of Gao Si acoustic wave on spherical particles is deduced in detail, which lays a foundation for studying the radiation force of complex acoustic wave. In the sixth chapter, the acoustic radiation force functions of Gao Si standing wave field and Gao Si like standing wave field in scattering theory are proposed and studied, and the characteristics of sound radiation force of spherical particles in Gao Si standing wave field and Gao Si like standing wave field are analyzed. At the same time, the control effect of Gao Si standing wave field on particles is explained, and this conclusion is in agreement with the previous experimental results. Chapter seven summarizes and prospects the full text. In this paper, the characteristics of sound radiation force of spherical particles in sound field are systematically studied, and various models of sound radiation force in different sound fields are established, and the theoretical derivation and numerical analysis are carried out. This study has important theoretical guidance for industrial sound radiation nondestructive manipulation and medical cell and drug screening.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O422
【相似文献】
相关期刊论文 前10条
1 卢学军;王开和;;管道系统振动声辐射的数值计算方法[J];机械强度;2006年02期
2 柳康宁;空泡在无限大平面边界附近的声辐射[J];上海力学;1983年03期
3 梁健;张重超;;平板声辐射效率的级数表达式[J];上海交通大学学报;1990年03期
4 刘晓宙,缪国平,余志新,刘应中;流体通过涡激振动机翼的声辐射研究[J];声学学报;2005年01期
5 姚熊亮;计方;钱德进;明磊;;壳间连接介质对双层壳声辐射性能的影响[J];声学技术;2009年03期
6 仪垂杰,杜树才,姜兴序;结构振动模态声辐射理论及试验研究[J];吉林工学院学报;1989年04期
7 王校青;向阳;石磊;钱思冲;郭志勇;;声辐射阻测量系统设计及测量精度影响因素分析[J];应用声学;2014年03期
8 倪樵;艾国庆;;深水中复合材料椭圆柱壳声辐射的数值分析[J];华中科技大学学报(自然科学版);2006年12期
9 张文浩;韩宝坤;王昌田;张婷婷;;离心式风机蜗壳振动与声辐射数值仿真[J];声学与电子工程;2011年04期
10 程钊;范军;王斌;汤渭霖;;水中矩形板的共振声辐射[J];声学学报;2013年01期
相关会议论文 前10条
1 杨迎春;周其斗;;边界元法中声辐射问题积分奇异性的处理方法[A];第十二届船舶水下噪声学术讨论会论文集[C];2009年
2 林大楷;李晓东;;管道声辐射的高阶数值模拟[A];第十届船舶水下噪声学术讨论会论文集[C];2005年
3 陈美霞;邱昌林;和卫平;魏建辉;;双壳体结构内外壳中低频振动与声辐射相似性分析[A];第十二届船舶水下噪声学术讨论会论文集[C];2009年
4 金叶青;姚熊亮;尹绪超;庞福振;;复杂锥柱结构声辐射数值计算研究[A];第十三届船舶水下噪声学术讨论会论文集[C];2011年
5 袁亮;艾国庆;倪樵;;用有限元/边界元方法计算U型输流管耦合振动声辐射[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
6 袁亮;艾国庆;倪樵;;用有限元/边界元方法计算U型输流管耦合振动声辐射[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
7 邓晓峰;李贤徽;;外场声辐射问题的无网格法[A];第十一届船舶水下噪声学术讨论会论文集[C];2007年
8 高煜;程昊;毕传兴;陈剑;;基于分布源边界点的结构声辐射和声灵敏度的研究[A];第九届全国振动理论及应用学术会议论文集[C];2007年
9 吕世金;黎胜;朱正道;杨婧媛;;双层加肋圆柱壳近场声辐射预报及模型试验分析[A];第十三届船舶水下噪声学术讨论会论文集[C];2011年
10 吴景明;李贤徽;胡文林;;应用进化策略对加筋板的声辐射优化[A];2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集[C];2008年
相关博士学位论文 前10条
1 吴融融;声波对球形粒子的声辐射力研究[D];南京大学;2016年
2 赵志高;结构声辐射的机理与数值方法研究[D];华中科技大学;2005年
3 刘志红;声辐射预估理论及其应用研究[D];青岛理工大学;2010年
4 陈鸿洋;水下有界空间中弹性结构的声辐射预报方法研究[D];哈尔滨工程大学;2013年
5 黎胜;水下结构声辐射和声传输的数值分析及主动控制模拟研究[D];大连理工大学;2001年
6 李林凌;计及气固耦合声辐射理论与应用研究[D];华中科技大学;2005年
7 高煜;基于波叠加方法的声辐射与声学灵敏度算法的若干关键问题研究[D];合肥工业大学;2009年
8 李普;结构振动声辐射系统鲁棒H_∞控制研究[D];东南大学;2001年
9 刘宝山;结构振动声辐射灵敏度分析及优化设计研究[D];大连理工大学;2010年
10 靳国永;结构声辐射与声传输有源控制理论与控制技术研究[D];哈尔滨工程大学;2007年
相关硕士学位论文 前10条
1 窦松然;壳体结构振动及声辐射的粘弹性阻尼控制技术研究[D];哈尔滨工业大学;2015年
2 姚明镜;基于流固声耦合的机械结构振动—声辐射研究[D];南华大学;2015年
3 陈朵朵;管道风吹声在锅炉泄漏监测中的应用研究[D];华北电力大学;2015年
4 李瑰;内燃机结构声辐射仿真技术研究[D];中北大学;2016年
5 高伟龙;基于声辐射的板结构优化[D];中北大学;2016年
6 田大龙;基于MATV的板结构声辐射快速算法研究[D];中北大学;2016年
7 杨勇;周期加强薄板声辐射数值方法研究[D];大连理工大学;2009年
8 石炜;矩形薄板的振动与声辐射研究及其控制[D];西南交通大学;2010年
9 丁舒涛;声辐射薄板的优化方法研究[D];上海交通大学;2010年
10 钱勇;结构声辐射主动控制研究及实现[D];桂林电子科技大学;2011年
,本文编号:2249267
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2249267.html