硅基纳米光波导谐振腔非线性光学特性及调控
[Abstract]:The silicon-based nano-optical waveguide is a low-loss guided wave structure capable of realizing optical information transmission, coupling and interaction with a substance in a sub-wavelength scale, and a series of major research breakthroughs on silicon-on-insulator (soi) have enabled the silicon-based material to be considered an ideal platform for building an integrated photonic device. such a full-light interconnection device, however, must be based on low-cost technology if it is to be applied to the mass consumer market. So the micro-nano-optical device with high integration of silicon-based photonic technology has raised the research upsurge of academic and industry in the world. In this paper, the related properties of silicon-based waveguide resonators and their applications are analyzed and studied. The resonator is mainly composed of a nano-waveguide grating, a transmission optical waveguide and a high-quality factor (Q) annular micro-cavity to be integrated in the same plane. The main influencing factors of the high-performance and high-integrated silicon waveguide resonator are: high-efficiency light introduction (coupling), low loss of the transmission waveguide, and high-Q resonant cavity. In this paper, based on the single mode (TE mode) transmission of the nano-optical waveguide, how to suppress the transmission loss of the waveguide, to improve the vertical coupling efficiency of the nano-grating, to maintain the high Q value of the resonant cavity for theoretical analysis, and then to test and analyze the temperature characteristic and the optical linear characteristic of the waveguide resonator, The optical non-linear characteristic and all-optical switch and other related applications have been experimentally studied. The content of the relevant research can be reduced to the following aspects: 1. The optical transmission characteristics of the nano-grating, the strip-shaped waveguide and the optical waveguide micro-cavity in the structural unit of the nano-optical waveguide are analyzed by using the FDTD and RSOFT software. firstly, carrying out numerical analysis on the single-mode transmission characteristic of the transmission optical waveguide, and analyzing and optimizing the transmission loss of the optical waveguide; secondly, based on the optical single-mode transmission, the calculation method of the grating coupling efficiency is given, the main parameter grating depth influenced by the grating coupling efficiency is obtained, and the period and the duty ratio are optimized and analyzed, the nano-grating structure with the period of 590nm and the duty ratio of 50 percent is finally determined, the width of the transmission nano-optical waveguide is 450nm, and the thickness is 220nm. On the basis of the theoretical analysis of the main performance parameters of the micro-ring resonator, the influence mechanism of the coupling coefficient and transmission loss of the micro-cavity of the nano-optical waveguide and the transmission waveguide is analyzed, and the relevant parameters are simulated and analyzed. and finally, the micro-cavity resonator integrated unit is optimized and designed by the L-Edit software. the loss of the transmission waveguide is reduced, the technical difficulties of the adjacent effect, the hysteresis effect, the micro-mask effect and the like in the micro-nano integral preparation are overcome, the silicon-based integrated nano-grating, a transmission optical waveguide and a series of micro-cavity resonator structures with different structures are prepared, Based on the high-Q single-ring micro-cavity, the linear characteristic of the micro-cavity is firstly tested and analyzed, the micro-cavity with a transmission loss of 0.532dB/ cm and a quality factor of 105 is obtained, and the temperature characteristic of the micro-cavity is tested, and the linearity of the resonance wavelength is 54. 1pm/ DEG C. Secondly, the optical signal control technology of the silicon-based micro-ring resonator was studied, and the optical thermal nonlinear characteristics of the micro-cavity were analyzed by single-beam power control and injection, and the red-shift threshold of the resonance peak was 0.34nm. Based on the theoretical analysis of the optical switch, the scheme of the full-optical switch of the micro-ring resonator based on the thermal non-linear effect is studied, and the full optical switch with the extinction ratio of 15dB and the switching time of the order of microsecond is realized by controlling the optical power of the corresponding wavelength. Secondly, the optical delay characteristics of the single micro-ring resonator are analyzed. By controlling the optical power of two adjacent resonant wavelengths, it is found that the magnitude of the detected optical power is in direct proportion to the amount of light delay, and the maximum delay amount of 15. 4ps and 8. 5ps is finally obtained by mutual control.
【学位授予单位】:中北大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN252
【相似文献】
相关期刊论文 前10条
1 ;光波导参数测试[J];中国光学与应用光学文摘;2007年01期
2 杨建义,江晓清,周伟勤,孙一翎,周强,,王明华;金属覆盖型光波导极化器的分析和设计[J];光电子·激光;1996年06期
3 刘育梁,王启明;硅基光波导结构与器件[J];红外与毫米波学报;1996年01期
4 袁明权,胡礼中;任意截面光波导的模式计算[J];光学学报;2001年04期
5 李广波;龙文华;贾科淼;江晓清;王明华;王跃林;杨建义;;玻璃基硅光波导的研制[J];光学仪器;2005年06期
6 张夕飞;马长峰;;基于变量变换伽辽金法光波导半矢量分析[J];计算物理;2006年02期
7 徐建锋;薄中阳;白剑;杨国光;;弯曲光波导模拟优化研究[J];光电子·激光;2006年09期
8 张金令;刘永智;;掺钕激光材料制作光波导研究进展[J];科技咨询导报;2007年30期
9 严朝军;彭文标;万均力;;脊型光波导偏振模场有限差分分析[J];陕西理工学院学报(自然科学版);2007年04期
10 张金令;刘永智;张晓霞;;离子交换法制作掺钕玻璃光波导实验研究[J];半导体光电;2008年04期
相关会议论文 前10条
1 李广波;龙文华;贾科淼;江晓清;王明华;王跃林;杨建义;;玻璃基硅光波导的研制[A];浙江省光学学会第九届学术年会暨新型光电技术青年论坛论文集[C];2005年
2 汤恒晟;李毅刚;段文涛;刘丽英;徐雷;;溶胶-凝胶法制备掺铒光波导薄膜的研究[A];上海市激光学会2005年学术年会论文集[C];2005年
3 费旭;万莹;崔占臣;;用于制作光波导器件的含氟光刻胶的合成与表征[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
4 费旭;胡娟;崔占臣;;含氟聚酯型聚合物光波导材料的合成[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
5 沈浩;李新碗;叶爱伦;;光波微环形腔的耦合特性及其在光交换网络中的应用研究[A];2003'全国微波毫米波会议论文集[C];2003年
6 万莹;费旭;周金山;崔占臣;;用于制作光波导器件的新型高含氟光刻胶的合成与表征[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
7 冷月华;贾连希;胡挺;杨林;杨华军;;亚微米SOI光波导的模式及偏振特性分析[A];2009年先进光学技术及其应用研讨会论文集(上册)[C];2009年
8 石邦任;武继江;孔梅;刘支华;;退火质子交换LiNbO_3光波导的模式解[A];全国第十一次光纤通信暨第十二届集成光学学术会议(OFCIO’2003)论文集[C];2003年
9 解琪;许荣国;范纪红;杨冶平;杨照金;;Y型光波导分束比和插入损耗测量[A];第十二届全国光学测试学术讨论会论文(摘要集)[C];2008年
10 冯莹;季家熔;钟钦;林亚风;黄宗升;魏文俭;;光波导偏振消光比测试仪[A];第九届全国光学测试学术讨论会论文(摘要集)[C];2001年
相关博士学位论文 前10条
1 张连;离子辐照光学晶体及硫系玻璃光波导制备及特性研究[D];山东大学;2015年
2 贾曰辰;介电晶体通道光波导的制备及其激光与二次谐波产生[D];山东大学;2015年
3 何小东;离子液体流体光波导的构建及其传输特性与光操控研究[D];兰州大学;2015年
4 仝晓刚;硅基纳米光波导谐振腔非线性光学特性及调控[D];中北大学;2016年
5 贾传磊;离子注入法与射频溅射法制备光波导的研究[D];山东大学;2006年
6 杨柳;基于强限制光波导的微环谐振器及其热光特性研究[D];浙江大学;2009年
7 金曦;氟化聚酰亚胺的合成、性能及其光波导制作工艺的研究[D];华中科技大学;2009年
8 张阜文;新型超宽带集成光波导无线接收的研究[D];电子科技大学;2004年
9 张希珍;1.55μm波段聚合物光波导放大器的基础研究[D];吉林大学;2007年
10 张丹;掺铒有机聚合物光波导放大器的理论研究与实验制备[D];吉林大学;2008年
相关硕士学位论文 前10条
1 任洪;离子交换四分支光波导的设计,制备与特性测试[D];吉林大学;2009年
2 李岩;亚微米硅基光波导的设计与模式特性研究[D];长春理工大学;2010年
3 杨纪超;硅光波导及器件结构的关键技术研究[D];浙江大学;2011年
4 柴立群;光波导数值模拟及实验研究[D];电子科技大学;2000年
5 熊前进;掺铒光波导放大器的理论与设计[D];大连理工大学;2000年
6 慕善坤;铒镱共掺光波导放大器的理论分析与实验研究[D];吉林大学;2007年
7 陈聪;铒镱共掺有机光波导放大器的基础研究[D];吉林大学;2007年
8 裴金花;离子交换掩埋条形介质光波导的制备与特性测试[D];吉林大学;2007年
9 齐飞;掺铒聚合物光波导放大器的模拟与制备[D];吉林大学;2008年
10 郑斌;玻璃基双层掩埋式光波导的制备与表征[D];浙江大学;2012年
本文编号:2329737
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2329737.html