植物中HECT和U-box基因的结构与进化研究
[Abstract]:E3 ubiquitin ligase is a highly diverse and important enzyme group, and they are involved in the ubiquitin proteasome pathway together with 26s proteasome. E3 ubiquitin ligase promotes the transfer of ubiquitin group to substrate protein. This ubiquitin label degrades the substrate protein. In this way, E3 ubiquitin ligase (. HECT (homologous to E6-associated protein C-terminus) and U-box (a modified RING motif without the full complement of Zn2-binding ligands) are two important E3 ubiquitin ligases which play an important role in many plant cytological and physiological processes. At present, the distribution, structure, evolution and function of E3 ubiquitin ligases in plant genomes are not completely clear. Based on the prediction of HECT and U-box genes in plant genomes, the structure and evolution of HECT and U-box genes in these plants and their possible biological functions were analyzed. The structure and evolution of HECT gene in soybean genome were analyzed. The sequence structure and evolution process of HECT gene in soybean genome were analyzed. The results showed that there were 19 HECT genes in soybean genome. According to phylogenetic relationship and domain organization, these genes can be divided into 7 groups. Importantly, the increase in the number of HECT genes in these soybeans is due to repeated events in evolutionary processes. Fifteen HECT genes were detected in 14 soybean tissues. The 15 detected HECT genes were relatively high in floral and bud tissues, but relatively low in other tissues. For each detected soybean HECT gene, the HECT gene of group VI was relatively high in most tissues. 2. 2. The structure and evolution of HECT gene in other plant genomes predicted the HECT gene of 40 plant species. It was found that HECT gene was found in all the tested plants, but there was a great difference in quantity. HECT genes in higher plants can be divided into 7 groups according to their evolutionary relationships. In addition to group II, each HECT group had corresponding lineal homologous genes of Arabidopsis thaliana. The HECT domain of HECT gene in all plants is very conserved and contains a large number of highly conserved amino acid residues. In addition, the selection pressure analysis of homologous HECT genes showed that these genes were strongly negatively selected, and the functional differences occurred between the three pairs of homologous subgroups. 3. The structure and evolution of U-box gene in soybean genome were analyzed. The results showed that there were 127 U-box genes in soybean genome. These U-box genes can be divided into three subfamilies according to evolutionary relationship and domain organization. Subfamily I mainly contains Kinase domain, subfamily II mainly contains ARM domain, and subfamily III family only contains U-box domain. It was also found that the amplification of these genes was mainly caused by repeated fragment events and tandem repeats in the evolution of soybean. Most of the 98 U-box genes expressed in soybean were relatively high in flower tissue, young leaf tissue, root nodule tissue and pod tissue at different stages. However, the expression was relatively low in the seed tissues at different stages. In conclusion, HECT and U-box genes in plant genomes were predicted by bioinformatics, and their structures and evolution were systematically analyzed. The results of the study can further deepen the understanding of the important function of E3 ligase in the regulation of plant gene expression.
【学位授予单位】:西北农林科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q943.2
【相似文献】
相关期刊论文 前10条
1 张玉芳;赵丽娟;曾幼玲;;基因表达研究中内参基因的选择与应用[J];植物生理学报;2014年08期
2 李旭平;乐卫东;;单细胞基因表达分析技术在神经科学研究中的应用[J];生理科学进展;2006年01期
3 胡瑞波;范成明;傅永福;;植物实时荧光定量PCR内参基因的选择[J];中国农业科技导报;2009年06期
4 常青山,余增亮;基因表达分析方法及其研究进展[J];生物技术通报;2002年06期
5 占祖兵;张越;赵若苹;王文;;炓腹果蝇中嵌合新基因的进化命运和表达模式[J];动物学研究;2011年06期
6 何琳;何娟;沈耕宇;杨波;黄水清;;一种通过文本挖掘发现实时定量聚合酶链式反应实验内参基因的方法研究[J];现代图书情报技术;2012年Z1期
7 王怡,王海平,王全立;基因表达系列分析技术研究进展[J];医学分子生物学杂志;2004年03期
8 吴志革;邹方东;;强大的广谱基因表达分析技术——基因表达系列分析法[J];四川动物;2006年03期
9 胡赓熙;检查基因表达分析的生物技术——cDNA阵列开发成功[J];中国科学院院刊;2000年03期
10 郑芳,周新,严明,叶水清,刘芳;微量材料系列性基因表达分析技术的研究[J];生物化学与生物物理进展;2002年03期
相关会议论文 前1条
1 陈维;;文昌鱼SOX9基因的克隆与分析[A];遗传学与社会可持续发展——2010中国青年遗传学家论坛论文摘要汇编[C];2010年
相关博士学位论文 前10条
1 刘胜浩;南极丝瓜藓耐逆相关功能基因的发掘和功能研究[D];山东大学;2015年
2 孟璐;癌细胞中OCT4B的功能及所调控的p53新变体研究[D];中国农业大学;2015年
3 齐笑笑;梨果实萼片宿存与脱落过程基因表达谱分析及PsIDA、PsJOINTLESS基因功能的初步研究[D];南京农业大学;2014年
4 陈鑫;转录组数据的共表达分析和扩展应用[D];吉林大学;2016年
5 李斌;拟南芥转录因子TCPs和表观遗传因子CLF及LHP1抑制KNOX基因的分子机制研究[D];复旦大学;2012年
6 张晓红;陆地棉开花相关基因的功能研究及调控分析[D];西北农林科技大学;2016年
7 高健;玉米抗纹枯病全基因组差异表达基因分析及分子调控机制研究[D];四川农业大学;2015年
8 孙海燕;正向选择驱动被子植物4-香豆酸辅酶A连接酶基因的功能分化[D];华中农业大学;2013年
9 张腾;大白菜抗根肿病基因CRb的分离克隆与功能鉴定[D];沈阳农业大学;2015年
10 刘莹;番茄心室形成相关调控基因的初步分析[D];沈阳农业大学;2015年
相关硕士学位论文 前10条
1 其木格;玉米黏虫转录组学研究及RNAi机制相关基因的克隆[D];内蒙古大学;2015年
2 刘祖碧;决明种子转录组学分析及胰蛋白酶抑制剂基因的克隆与功能研究[D];西南交通大学;2014年
3 张毛毛;水稻OsmtATPS1基因的克隆及功能初步分析[D];西北农林科技大学;2015年
4 靳晶豪;辣椒疫病抗性相关基因CaPT11和CaHIR4的克隆及初步功能分析[D];西北农林科技大学;2015年
5 肖瑶;茶树AsA代谢相关酶基因的克隆及表达分析[D];西北农林科技大学;2015年
6 杨立清;甜瓜CMe-ERF1和CMe-ERF2基因的功能研究[D];内蒙古大学;2015年
7 李亚莉;苹果磷脂酸合成途径相关基因的生物信息学分析及DGK基因表达分析[D];西北农林科技大学;2015年
8 徐伟;小麦bZIP基因TaGBF参与植物开花调控机制研究[D];山东大学;2015年
9 位正玉;ABA胁迫相关的小麦MAC基因的克隆及功能研究[D];山东大学;2015年
10 岳思思;拟南芥AT2G17350基因功能的初步研究[D];陕西师范大学;2015年
,本文编号:2331400
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2331400.html