一维系统中的Majorana费米子和分数费米子
[Abstract]:In a system where the properties of low energy levels can be approximately described by Dirac electrons, Majorana fermions and fractional fermions appear in the form of zero-mode bound states at the boundary between the topological non-mediocre region and the mediocre region. The fundamental reason is that the scalar field coupled with Dirac spinor near the boundary presents a kink distribution. The scalar field of the kink type will open the energy gap of the system, and it is different from the scalar field of uniform distribution in topology. The Majorana fermion and fractional fermion appear under the nonmediocre scalar field of this topology. In the first chapter, we introduce several famous models and provide some theoretical support for the later chapters. In chapter 2, we study a one-dimensional Rashba system and find that the general periodic magnetic field can induce Majorana fermion and fractional fermion at its boundary. In this system, the Majorana fermion depends on the superconducting pairing potential introduced by the proximity effect, but the presence of fractional fermion is not necessary. Different from the uniform magnetic field, the periodic magnetic field can induce a lot of energy gaps in the energy spectrum of the system. When the chemical potential passes through any of the energy gaps, the introduction of the superconducting pairing potential makes the Majorana fermion appear at the system boundary. The fractional fermion appears in the overlapping part of the two energy gaps, and the period of the magnetic field must be an integer multiple of the coupling length of the Rashba spin orbit. The appearance of the two zero-mode bound states has no specific requirements for the specific form of magnetic field. In chapter 3, we study a one-dimensional single-chain lattice system composed of Majorana fermions. It is found that the tricritical Ising (TCI) phase transition occurs when the interaction of the system is strong enough. This type of phase transition is located at the intersection of the Ising phase transition and the first order phase transition and shows supersymmetry. We use the density matrix renormalization group method to study the system in detail and obtain the system parameters at the TCI phase transition point. We find that there is a strong interaction at this critical point, and it is difficult for a general system to achieve this intensity. However, we find that in a Majorana lattice system, in principle, the ratio of interaction to transition term can be arbitrarily changed by simply adjusting the chemical potential. So that it can reach the TCI phase transition point. In Chapter 4 we also consider the Majorana lattice system but this time it is a ladder shaped model which can be implemented on the surface of a topological insulator. Similar to the previous chapter, we find out the TCI phase transition point through detailed analytical and numerical analysis, the two sides of which are the Ising phase transition and the first order phase transition, respectively. The advantage of the model is that it does not require the system to have strong interaction. Finally, we discuss how to adjust the relevant parameters to make the system reach the TCI phase transition point and the characteristics of supersymmetry. In the last chapter, we briefly summarize the main findings of this paper and briefly discuss the possible research directions in the future.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O572.2
【相似文献】
相关期刊论文 前10条
1 万陵德;余洪伟;程宝莲;鲁公儒;;分立对称性与三代费米子的统一(Ⅱ)[J];新乡师范学院学报(自然科学版);1984年01期
2 江向东;;SU(6)大统一模型[J];高能物理与核物理;1984年03期
3 曾远文;费米子算符的一些关系式[J];大学物理;1984年09期
4 郑波;;可解的1+1维格点U(1)规范模型与费米子加倍问题[J];高能物理与核物理;1990年04期
5 罗向前;陈启洲;;低维规范理论中的费米子真空凝聚[J];高能物理与核物理;1992年08期
6 许伯威;费米子数的时空性质[J];兰州大学学报;1978年03期
7 许伯威;;费米子数的时空性质[J];高能物理与核物理;1979年01期
8 王维玺;;E_6的大统一模型[J];内蒙古大学学报(自然科学版);1982年01期
9 孙洪洲;韩其智;;玻色子费米子体系波函数的分类[J];高能物理与核物理;1982年03期
10 马中骐;东方晓;杜东生;薛丕友;;一个可能的SU(9)大统一模型[J];高能物理与核物理;1982年03期
相关会议论文 前1条
1 甘姝;汪凯戈;;双费米子的分束器干涉[A];第十三届全国量子光学学术报告会论文摘要集[C];2008年
相关重要报纸文章 前4条
1 记者 常丽君;美科学家造出全新量子物质形态[N];科技日报;2012年
2 周清春;第六态:敲开物质世界的又一扇大门[N];科技日报;2005年
3 张孟军;科学家制出玻色-爱因斯坦凝聚态物质[N];科技日报;2003年
4 记者 毛磊;2003年度最重要物理学新闻[N];新华每日电讯;2003年
相关博士学位论文 前5条
1 朱小宇;一维系统中的Majorana费米子和分数费米子[D];南京大学;2016年
2 李伟;狄拉克费米子体系中的手征相变[D];中国科学技术大学;2010年
3 王宁;基于Majorana费米子的量子点体系中量子输运和自旋性质的研究[D];河北师范大学;2015年
4 王景荣;狄拉克费米子体系中的量子相变和非费米液体行为[D];中国科学技术大学;2014年
5 李海涛;厚膜上的费米子共振态[D];兰州大学;2011年
相关硕士学位论文 前6条
1 郑翌洁;拓扑绝缘体台阶结构以及Majorana费米子的输运特性[D];河北师范大学;2016年
2 苗子京;Majorana边态导致的交叉Andreev反射研究[D];河北师范大学;2016年
3 崔会丽;基于Majorana费米子的热电性质[D];河北师范大学;2014年
4 徐增光;膜世界上费米子的新局域化机制及f(R)膜世界引力共振态的研究[D];兰州大学;2014年
5 寇朝帅;幺正费米气体热力学量的低温与高温展开[D];华中师范大学;2014年
6 毛普健;5维黑洞背景下费米子的霍金辐射[D];兰州大学;2012年
,本文编号:2356033
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2356033.html