蒙特卡罗中子输运宽能区在线核截面生成方法研究
[Abstract]:When the reactor core temperature changes, the neutron cross section of various materials in the reactor varies with the temperature, which causes the reactivity change. In order to accurately simulate the interaction between neutrons and various materials at different temperatures in the reactor, reaction cross sections at different temperatures should be generated. Although the traditional on-line generation method avoids storing a large number of nuclear cross-section data directly, there are still serious problems such as low efficiency and narrow energy region adaptability. In this paper, based on the investigation of the present situation of on-line nuclear cross section generation in Monte Carlo neutron transport at home and abroad, Based on the characteristics of the super Monka nuclear simulation software system SuperMC, developed by the FDS team of the Institute of Nuclear Safety Technology of the Chinese Academy of Sciences, according to the cross sections of the distinguishable resonance energy region, the thermal energy region and the indistinguishable resonance energy region, In this paper, the method of generation of nuclear cross section in the wide energy region of neutron transport in Monka is studied. The main research contents and innovations in this paper are as follows: (1) an on-line generation method of discernible resonance energy region core cross-section based on double exponential transformation and Gao Si integral coupling is proposed. In order to solve the problem of time-consuming generation of the visible resonance cross section in the wide energy region, an on-line generation method based on double exponential transformation is proposed in the low energy region and an on-line generation method based on Gauss Hermitt integral in the high energy region. At the same time, the accuracy of the core section is guaranteed, and the efficiency of section generation is greatly improved. The test results show that the efficiency of cross section generation is 12 times higher than that of analytical method on the basis of ensuring the generation accuracy of the core section. The validity of the proposed method is verified by Jezebel and Godiva. (2) an on-line generation method of thermal energy region nuclear cross section based on Neville interpolation is proposed. According to the characteristic of the temperature dependent heat scattering cross section, the Nevlle interpolation algorithm is proposed to generate the heat scattering cross section corresponding to the target temperature online. Using the S (伪, 尾) benchmark and other examples issued by the International Nuclear data Commission, the results show that, at the same time, the accuracy is guaranteed, The on-line generation method of heat scattering cross section based on Neville interpolation is more than one order of magnitude higher than that of the traditional method. (3) the method of generation of core cross section in the indiscernible resonance energy region based on piecewise linear interpolation is developed. Based on the characteristics of probability table parameters at different temperatures, the kernel cross-section of the adjacent temperature interval is generated online by piecewise linear interpolation. The test results of bigtenl and bigten2 show that the deviation between the method and the reference value is less than 20pcmwhich proves the accuracy of the method. In order to verify the accuracy and effectiveness of the method proposed in this paper, the international critical safety benchmark, the reactive Doppler coefficient benchmark and the IAEA BN-600 benchmark are used to verify the accuracy and effectiveness of the proposed method. Compared with the conventional nuclear cross section generation method and the reference value, the results show that the Monte Carlo neutron transport on-line nuclear cross section generation method developed in this paper can accurately and efficiently generate neutron cross sections at various temperatures. It can be used for reactor multi-physical coupling calculation.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TL329
【相似文献】
相关期刊论文 前10条
1 黄祖洽;;高速运动介质中中子输运的新处理方法[J];北京师范大学学报(自然科学版);1981年03期
2 杜祥琬;非线性中子输运问题的一个解法[J];计算物理;1984年02期
3 李龙;彭先觉;;中子输运随机过程中的转移概率矩阵[J];原子能科学技术;2009年07期
4 高产;李茂生;;用综合核方法求解中子输运临界问题的误差分析[J];核科学与工程;2009年02期
5 黄祖洽;;中子输运对介质流体力学运动的影响[J];北京师范大学学报(自然科学版);1982年03期
6 刘成安,黄文凯,田东风;介质运动对中子输运的影响及计算研究(二)———高速运动介质中中子输运问题[J];计算物理;1996年03期
7 刘庆杰;吴宏春;曹良志;;一维球形裂变系统二元随机介质中子输运数值求解[J];核动力工程;2011年02期
8 张颖,陈伟,陈立新;中子输运计算界面流方法的数学共扼方程[J];核动力工程;2005年02期
9 巨海涛;吴宏春;;强散射介质中子输运计算的角度相关附加再平衡加速算法[J];原子能科学技术;2009年01期
10 张颖,陈伟,谢仲生,陈立新;中子输运计算界面流方法的微扰计算[J];核动力工程;2005年03期
相关会议论文 前9条
1 刘庆杰;吴宏春;曹良志;;一维球形二元随机介质系统中子输运数值求解[A];第十二届反应堆数值计算与粒子输运学术会议论文集[C];2008年
2 杨yN罡;李兀景;;光中子输运特性研究[A];第十三届全国核电子学与核探测技术学术年会论文集(下册)[C];2006年
3 吴宜灿;李静惊;陈明亮;许德政;蒋洁琼;曹瑞芬;曾勤;龙鹏程;胡海敏;卢磊;李莹;丁爱萍;罗月童;汤正道;张俊军;邹俊;柏云青;FDS团队;;大型集成多功能中子学计算系统的研究进展[A];全国计算物理学会第六届年会和学术交流会论文摘要集[C];2007年
4 黄伟兵;陈伦寿;吴宏春;;MCNP程序在多群中子输运计算中的应用[A];中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第6册)[C];2009年
5 吴宜灿;李静惊;陈明亮;FDS 团队;;大型集成多功能中子学计算与分析系统的研发进展[A];第三届反应堆物理与核材料学术研讨会论文集[C];2007年
6 吴宜灿;李静惊;陈明亮;FDS团队;;大型集成多功能中子学计算与分析系统的研发进展[A];第三届反应堆物理与核材料学术研讨会论文摘要集[C];2007年
7 胡海敏;李静惊;吴宜灿;;多维中子输运SN计算程序辅助建模与计算结果可视化方法研究[A];第二届全国反应堆物理与核材料学术研讨会论文集[C];2005年
8 王电喜;陈珍平;何桃;王国忠;曾勤;龙鹏程;胡丽琴;吴宜灿;FDS团队;;Visual BUS中基于MCAM的特征线中子输运方法的研究与实现[A];第五届反应堆物理与核材料学术研讨会、第二届核能软件自主化研讨会会议摘要集[C];2011年
9 司胜义;;节块内嵌S_N方法的算法研究及程序开发[A];全国计算物理学会第六届年会和学术交流会论文摘要集[C];2007年
相关博士学位论文 前1条
1 陈锐;蒙特卡罗中子输运宽能区在线核截面生成方法研究[D];中国科学技术大学;2017年
相关硕士学位论文 前4条
1 张顺;基于HEPS_N三维高效中子输运方法研究[D];华北电力大学(北京);2016年
2 王超;多群中子输运蒙特卡罗伴随计算[D];中国工程物理研究院;2012年
3 汤青松;基于离散纵标方法R-Z几何下的中子输运程序开发[D];上海交通大学;2013年
4 刘同先;MCNP在中子输运问题计算中的影响因素分析[D];哈尔滨工程大学;2007年
,本文编号:2359762
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2359762.html