热机载荷作用下功能梯度曲梁和圆柱壳的静态响应
[Abstract]:The static and dynamic response of a functionally graded beam shell structure is an important part of the research on non-uniform solid mechanics. In this paper, the static mechanical responses of curved beams and cylindrical shells with functionally gradient variable curvature are studied by means of theoretical analysis and numerical calculation, which are mainly composed of two parts. 1. Based on the exact geometric nonlinear theory and the first order shear deformation theory of elastic curved beam plane problem, the axis elongation and transverse shear deformation are accurately considered in the geometric equation. The differential governing equations of large elastic deformation of functionally gradient Euler curved beams with variable curvature and Timoshenko curved beams under mechanical and thermal loads are established respectively. The governing differential equation is variable because the curvature can be taken into account and the stiffness coefficient related to curvature is a function of the arc length coordinate of the axis. The basic unknown is expressed as the function of the axis arc length coordinate before deformation, and the arc length is represented by the parameter variable of the curved beam axis parameter equation. The two-point boundary value problem of strongly nonlinear ordinary differential equations with multiple unknowns is solved numerically by shooting method. The problem of large deformation and bending of functionally gradient elliptic arc Euler curved beams under different boundary conditions is quantitatively analyzed, and the material gradient exponents are discussed. The influence of temperature load parameter and structure geometry parameter on the internal force and deformation of curved beam. Using the same geometric nonlinear mathematical model, the nonlinear stability of elliptic arc Euler curved beams with fixed ends under different mechanical loads is studied, and the equilibrium path characteristic curves of the curved beams are given. Then, the problem of large thermoelastic deformation of functionally gradient cycloid and elliptic arc Timoshenko curved beams under uniform and transverse non-uniform heating is numerically solved. The solutions of Timoshenko curved beams and corresponding Euler curved beams are compared. The influence of transverse shear deformation on the internal force and deformation of curved beam is analyzed. The buckling behavior of functionally gradient cylindrical shells under thermal loading is studied on the assumption that the material properties and the temperature field of cylindrical shells change only along the thickness direction. Based on the classical linear thin shell theory, a dimensionless governing equation of thermal buckling expressed by geometric midplane displacement is derived. By using the method of separating variables, the governing equations are transformed from complex partial differential equations to ordinary differential equations with unknown functions coupled with each other. The boundary conditions are considered as simple support at both ends and fixed at both ends. The two point boundary value problem is solved by shooting method, and the critical buckling temperature load is obtained. The critical buckling temperature of functionally graded cylindrical shells under uniform and non-uniform heating conditions is discussed. The critical buckling temperature of functionally graded cylindrical shells with the material gradient exponent n, thickness to diameter ratio 未 = h / R and aspect diameter ratio 位 = l / R are discussed. The variation of fT (the ratio of the outer surface to the inner surface of the shell), etc. The numerical results show that the critical buckling temperature of functionally graded cylindrical shells increases with the increase of material gradient index, that is, the increase of ceramic composition. The dimensionless critical buckling temperature decreases with the increase of the ratio of thickness to diameter, but is not sensitive to the change of the ratio of length to diameter. The values of the heating parameters reflect the inhomogeneity of the temperature field. The larger the heating parameters are, the smaller the dimensionless critical buckling temperature is. The enhancement of boundary constraints will lead to the increase of critical buckling temperature, but with the increase of thick-diameter ratio, the effect of boundary constraints will weaken.
【学位授予单位】:扬州大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O342
【相似文献】
相关期刊论文 前10条
1 朱昊文;李尧臣;杨昌锦;;功能梯度压电材料板的有限元解[J];力学季刊;2005年04期
2 于涛;仲政;;均布荷载作用下功能梯度悬臂梁弯曲问题的解析解[J];固体力学学报;2006年01期
3 程红梅;曹志远;;复杂边界条件功能梯度板三维分析的细观元法[J];工程力学;2006年12期
4 于涛;仲政;;功能梯度压电悬臂梁的弯曲分析[J];中国科学G辑:物理学、力学、天文学;2006年05期
5 郭丽芳;李星;;含有垂直于边界的裂纹的功能梯度压电条与功能梯度条粘结的静态问题[J];兰州大学学报(自然科学版);2007年06期
6 曹志远;唐寿高;程国华;;复杂形状及开孔功能梯度板的三维分析[J];应用数学和力学;2009年01期
7 程红梅;曹志远;沈晓明;;空隙分布对功能梯度板件宏观响应的影响[J];力学与实践;2009年02期
8 程红梅;曹志远;;中等组分网状结构局部微变对功能梯度板三维动力特性的影响[J];应用力学学报;2010年02期
9 李世荣;高颖;张靖华;;功能梯度与均匀圆板静动态解之间的相似转换关系[J];固体力学学报;2011年S1期
10 胡宇达;张志强;;热环境中功能梯度圆形薄板的混沌运动[J];计算力学学报;2012年02期
相关会议论文 前10条
1 丁皓江;杨博;陈伟球;;功能梯度板柱面弯曲的弹性力学解[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年
2 边祖光;陈伟球;丁皓江;;单跨及多跨功能梯度板的柱形弯曲[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
3 尚尔涛;仲政;;均布荷载作用下功能梯度热释电材料矩形板的三维精确解[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
4 于涛;仲政;;功能梯度悬臂梁受复杂载荷作用问题的解析解[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
5 贾尚帅;杨志安;;受机械力作用金属/陶瓷功能梯度板的亚谐共振研究[A];第六届中国功能材料及其应用学术会议论文集(9)[C];2007年
6 杨志安;贾尚帅;;受机械力作用金属/陶瓷功能梯度板的非线性振动模型[A];第六届中国功能材料及其应用学术会议论文集(9)[C];2007年
7 杨志安;贾尚帅;;受机械力作用金属/陶瓷功能梯度板的超谐共振研究[A];第六届中国功能材料及其应用学术会议论文集(9)[C];2007年
8 黎亮;章定国;;作大范围运动功能梯度矩形薄板的动力学建模研究[A];第九届全国动力学与控制学术会议会议手册[C];2012年
9 程红梅;曹志远;;具有不同材料组分细观构成的功能梯度板件的跨尺度动力特性分析[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
10 程站起;仲政;;功能梯度板条断裂分析[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
相关博士学位论文 前10条
1 史飞飞;功能梯度多层金属板的冲击行为研究[D];西北工业大学;2015年
2 辛立彪;力热磁电载荷作用下功能梯度厚壁圆筒的理论解[D];北京交通大学;2017年
3 万泽青;热机载荷作用下功能梯度曲梁和圆柱壳的静态响应[D];扬州大学;2016年
4 康颖安;功能梯度梁的静动态力学行为分析[D];中南大学;2012年
5 李昊;功能梯度圆环/筒的弹性理论分析及其应用[D];合肥工业大学;2013年
6 毛贻齐;低速冲击下损伤层合/功能梯度板壳的非线性动力学研究[D];湖南大学;2011年
7 刘静;功能梯度涂层结构的热弹性接触与动态滑移稳定性研究[D];北京交通大学;2013年
8 张涛涛;功能梯度压电微结构力—电耦合特性分析[D];北京交通大学;2008年
9 向宏军;功能梯度压电智能梁的特性分析及其应用[D];北京交通大学;2007年
10 李翔宇;横观各向同性功能梯度圆板和环板的轴对称问题[D];浙江大学;2007年
相关硕士学位论文 前10条
1 陈野;基于不同梯度模式的功能梯度圆形弹性薄板的振动特性[D];吉林大学;2008年
2 羌煜皓;基于粉体脉冲微输送的Ti/HA功能梯度结构牙根植入材料制备方法研究[D];南京理工大学;2015年
3 莫春美;厚/薄压电功能梯度矩形板动力分析的样条无网格法[D];广西大学;2015年
4 赵文举;功能梯度高阶剪切梁有限元动力特性分析[D];广西大学;2015年
5 池明欣;功能梯度磁—电—弹板动力响应对材料参数的敏感度分析[D];湖南科技大学;2015年
6 肖雄;WC-15%TiC-Co功能梯度硬质合金刀具的摩擦磨损及切削性能研究[D];湖南科技大学;2015年
7 俞剑俊;功能梯度板线性自由振动有限元分析[D];扬州大学;2015年
8 张贺;功能梯度蜂窝建模与优化设计方法研究[D];北京理工大学;2016年
9 于凯;热弹耦合功能梯度圆板的热冲击屈曲[D];兰州理工大学;2016年
10 孙冬艳;移动荷载作用下功能梯度纳米梁的动态响应[D];兰州理工大学;2016年
,本文编号:2371453
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2371453.html