铜铟硫基半导体量子点光电特性及其应用的研究
[Abstract]:In semiconductor quantum dots, due to the existence of quantum confinement effect, it has unique optical properties. Therefore, it has an important application prospect in biological, photoelectric and photovoltaic fields. In this paper, based on the concept of green chemistry, the nontoxic copper-indium-sulfur-based quantum dots have been experimentally studied from the aspects of material synthesis, optical mechanism and application, and the following innovative achievements have been obtained: 1. The optical mechanism of quantum dots has been studied. We have synthesized CuInS2 quantum dots, CuInS2/ZnS core / shell quantum dots and ZnCuInS/ZnSe/ZnS core / shell quantum dots. During the characterization of the quantum dots, some properties of these quantum dots were found, including the wide absorption and luminescence spectra, and the existence of a large Stokes shift, which is determined by the energy band structure and the luminescence mechanism. The large Stokes shift (400-500meV) proves that the main recombination process in this kind of quantum dots is the recombination related to the defect energy level. The obvious size-dependent effect also proves that the donor-acceptor pair (donor-acceptorpair,-acceptor pair) recombination is one of the main recombination processes of this kind of quantum dots, but not the dominant one. The temperature-dependent photoluminescence spectra and time-resolved photoluminescence spectra of ZnCuInS/ZnSe/ZnS core / shell quantum dots, CuInS2 quantum dots with different ratio of Cu to In and CuInS2/ZnS core / shell quantum dots were measured. Through the analysis of many kinds of spectra, we have studied the recombination mechanism of this kind of quantum dots in depth. It is also proposed that there are many kinds of recombination processes in the quantum dots, including the recombination related to the surface states, the recombination between the conduction band and the defect level, and the DAP recombination. Then, we change the ratio of Cu to In in CuInS2 QDs and CuInS2/ZnS core / shell QDs and analyze their temperature dependent photoluminescence spectra. The recombination between conduction band and defect level and the proportion of DAP recombination in DAP recombination increased. 3. Based on the study of temperature characteristics of ZnCuInS/ZnSe/ZnS core / shell quantum dots, we apply them to temperature sensing of micro-region and area array. The coefficient (temperature coefficient) of photoluminescence intensity of the quantum dot with temperature is 0.66%, and the temperature coefficient of photoluminescence of the quantum dot is 0.66%. An optical fiber spectrometer and a high power microscope are used to measure the temperature of the micro-region and the area array by measuring the photoluminescence spectra of the quantum dots in the micron region. The test error of the system is less than 2%. 4. Preparation of quantum dot light emitting diode (QD-LED) and study of temperature effect. Three sizes of ZnCuInS/ZnSe/ZnS core / shell quantum dots were assembled with GaN light emitting diodes to produce QD-LED. with red, yellow and green light. Under the operating voltage of 2.6 V, the power efficiency of the corresponding three colors of QD-LED is 14.0 lm / W, 47.1lm / W and 62.4lm / w, respectively. By analyzing the color coordinates, spectral peak position, half-peak width and power efficiency of QD-LED at different operating voltages, we have studied the temperature effect of QD-LED. The results show that the thermal quenching caused by the rising surface temperature of light emitting diodes is an important factor for the decrease of the power efficiency of the devices with the increase of the voltage. At the same time, the temperature coefficients of the emission peaks of ZnCuInS/ZnSe/ZnS core / shell QDs are very low (the temperature coefficients of red, yellow and green QDs are 0.022 nm C, 0.050 nm C and 0.068nm/oC, respectively). This makes the color coordinates of QD-LED change little under different working voltages, which proves that the color stability of the QD-LED is good. Compared with the corresponding data of CdSe QDs, ZnCuInS/ZnSe/ZnS core / shell QDs are more suitable for down-conversion materials in terms of color stability.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O471.1
【共引文献】
相关期刊论文 前10条
1 王远强;李耀刚;王宏志;张青红;包一鸣;姬宇;;CuInS_2量子点的制备及其敏化太阳能电池研究进展[J];材料导报;2013年07期
2 杜凯;张金花;王峰;邹继伟;许圣杰;吴悠;余大斌;;Ⅱ-Ⅵ族量子点的制备和非线性光学性质研究进展[J];材料导报;2013年17期
3 Geeta Rani;P.D.Sahare;;Structural and Spectroscopic Characterizations of ZnO Quantum Dots Annealed at Different Temperatures[J];Journal of Materials Science & Technology;2013年11期
4 张跃宗;李春霞;王瑞春;庄四祥;胡宏生;;直下式LED背光TV色域的研究[J];光电子技术;2014年01期
5 谢翠萍;向卫东;骆乐;钟家松;赵斌宇;梁晓娟;;AgInS_2量子点研究进展[J];功能材料;2014年04期
6 陈峗汉;张雪;周洁;曹进;张建华;殷录乔;朱文清;;红、绿CdSe@ZnS量子点配比对三波段标准白光LED器件的影响[J];发光学报;2014年08期
7 张冯章;李湘奇;邬小凤;范希梅;张朝良;;Influence of deposition temperature on CdS thin films by polyol method[J];Journal of Semiconductors;2014年08期
8 陈肖慧;袁曦;华杰;赵家龙;李海波;;壳层相关的CdSe核/壳量子点发光的热稳定性[J];发光学报;2014年09期
9 姜青松;朱月华;王海波;施丰华;卓宁泽;李东志;汤坤;;水相合成CdTe量子点及其性能表征[J];功能材料;2014年16期
10 覃爱苗;蒋丽;蒋坤朋;廖雷;;基于水相法制备CdTe量子点及其功能化组装研究进展[J];材料导报;2014年15期
相关硕士学位论文 前10条
1 勒孚河;铕激活的碱土金属磷酸盐基质发光材料的制备及其发光性能研究[D];新疆大学;2011年
2 何莎莎;ZnO薄膜的低温溶液法制备及在光电器件中应用[D];浙江大学;2013年
3 彭鹏;Sr_3AlO_4F:Ce~(3+)荧光粉及其固溶体的制备和发光性能研究[D];北京有色金属研究总院;2013年
4 丁倩倩;镍基贵金属纳米材料用于表面增强拉曼光谱基底研究[D];安徽大学;2013年
5 齐晓妍;Gd~(3+)/Yb~(3+)掺杂ZnO量子点双模式MRI/CT成像探针[D];长春工业大学;2013年
6 黄云波;纳米颗粒一维光子晶体的制备及其在控制发光方面的应用[D];上海师范大学;2013年
7 赵婕;聚合物太阳能电池中电子缓冲层的优化[D];南昌大学;2013年
8 高冬梅;超声催化1,2-二苯乙醇类化合物的合成及抑菌活性的评价[D];西北农林科技大学;2013年
9 周婷;锂离子电池负极材料Li_4Ti_5O_(12)的改性及电化学性能研究[D];福建师范大学;2013年
10 林算治;掺铝氧化锌透明导电薄膜上无催化剂生长ZnO纳米棒阵列及其光学特性研究[D];福建师范大学;2013年
本文编号:2436610
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2436610.html