多铁性隧道结磁电输运的轨道效应

发布时间:2019-03-05 18:51
【摘要】:随着信息数据膨胀的加速发展,传统的只利用电子电荷属性的电子器件已经无法满足人们对元器件微型化、集成化等方面的迫切需求。因此,同时利用电子的电荷和自旋自由度来作为信息储存和传输载体的新兴学科——自旋电子学得到了科研工作者的广泛关注,其中基于巨磁阻效应(GMR)或隧穿磁电阻效应(TMR)的自旋电子学读头已经在信息存储方面取得了非常成功的应用。然而,这类元件数据的写入仍然需要通过外加磁场来实现。考虑到磁场作用范围的非局域化特点和产生磁场所需的高能耗的缺点,寻找超低能耗、精确局域化的非磁场有效控制就成为自旋电子学亟待研究解决的重要课题。多铁性材料,由于其中电性和磁性的共存并且相互耦合,为利用非磁场的方式控制磁性提供了物理可能。此外,考虑多铁性材料表界面处磁序非平庸的空间几何分布,我们可以获得额外的拓扑性自旋轨道相互作用;同时由于在两种材料界面处约束势阱空间反射对称性的破缺还会存在Rashba自旋轨道耦合,进而通过对轨道角动量的调制,我们也可以实现对材料磁性的非磁场控制。在本论文中,我们从理论上系统地研究了电场可调控的自旋轨道耦合(Rashba自旋轨道耦合和材料的磁拓扑性质诱导的自旋轨道耦合)对存在磁电相互作用的多铁性隧道结中输运性质的影响,并进一步讨论了输运性质关联的多种物理效应:如自旋霍尔效应,反常霍尔效应以及自旋弛豫之间的相互影响和调制。这些研究结果为未来基于自旋非磁调控的新型微纳自旋电子学器件的研发提供了必要的理论支持和现实的指导价值。在第一章我们回顾了多铁性系统的理论和实验方面的最新研究进展并且阐明了研究多铁性隧道结中磁电输运性质的重要意义以及优势所在。第二章我们分别从唯象角度和微观理论方面研究了界面处Rashba自旋轨道耦合和拓扑性自旋轨道耦合对多铁性隧道结中隧穿各向异性磁电阻效应的影响。由于这两项自旋轨道耦合的强度可以通过外电场来调控,因此最终隧穿磁电阻的各向异性大小是电场可控的。此外,磁电阻各向异性的幅度与之前已有结果相比也明显提高一个量级,这项研究对于未来生产多态数据存储器件提供了必要的理论指导。紧接着我们在第三章探讨了多铁性隧道结中的Seebeck和spin Seebeck效应。发现自旋轨道耦合的存在使得系统的热电系数表现出磁化方向依赖的各向异性,并且通过进一步计算可以得出系统具有比较高的品质因子(1),因此该结构有望被应用于生产高效率的热电和热自旋器件中。考虑到铁电/铁磁异质结界面处可能的磁电相互作用,在第四章我们研究了磁电效应对正常金属/铁电/铁磁隧道结的铁磁层中磁性耗散的影响。发现自旋轨道耦合的存在导致Gillbert阻尼呈现出C2v二重对称性,并且在铁电极化方向发生翻转时,Gillbert阻尼值的大小也会发生改变。第五章我们在不考虑任何杂质效应的前提下,分别研究了两种不同多铁性隧道结中内禀的自旋轨道耦合对隧穿自旋霍尔效应和反常霍尔效应的影响。最后一章我们对所有研究内容进行了总结并对下一步工作作出了展望。
[Abstract]:With the rapid development of the expansion of the information data, the traditional electronic device using the electronic charge property has not been able to meet the urgent need of the miniaturization and integration of the components. Therefore, at the same time, the electronic charge and the spin degree of freedom are used as the subject _ spin electronics of the information storage and transmission carrier to be widely concerned by the scientific research workers, In which a spin-electronics read head based on a giant magnetoresistive effect (gmr) or a tunneling magnetoresistance effect (tmr) has made a very successful application in information storage. However, writing of such element data still needs to be achieved by the addition of a magnetic field. In view of the non-localized characteristics of the magnetic field and the disadvantage of the high energy consumption required to generate the magnetic field, it is an important task to find the ultra-low energy consumption and the accurate localization of the non-magnetic field effective control. The multiferroic material is physically possible to control the magnetic properties in a non-magnetic field due to the coexistence and mutual coupling of electrical and magnetic properties. in addition, taking into account that non-ordinary spatial geometric distribution of the magnetic sequence at the interface of the multi-layer material, we can obtain additional topological spin-orbit interaction; at the same time, the Rashba spin-orbit coupling can exist due to the defect that the space reflection symmetry of the potential well is constrained at the interface of the two materials, Furthermore, by the modulation of the orbital angular momentum, we can also realize the non-magnetic field control of the magnetic properties of the material. In this paper, we have systematically studied the effect of the electric field-controlled spin-orbit coupling (spin-orbit coupling induced by the magnetic topological properties of the Rashba spin-track coupling and the material) on the transport properties of the multi-layer tunnel junction in which the magnetoelectric interaction exists, And further discusses the various physical effects associated with the transport properties, such as spin hall effect, abnormal hall effect and the interaction and modulation between spin relaxation. The results of these studies provide the necessary theoretical support and practical guidance value for the development of a new micro-nano-spin electronic device based on spin-non-magnetic control. In the first chapter, we review the latest research progress in the theory and experiment of the multi-channel system, and clarify the important significance and the advantage of the study of the magnetoelectric transport property in the multi-channel tunnel junction. In the second chapter, we study the effect of the Rashba spin-orbit coupling and the topological spin-orbit coupling on the tunneling anisotropic magnetoresistance effect in the multi-tunnel junction from the phenomenological angle and the micro-theory. Since the strength of the two spin-orbit coupling can be regulated by the external electric field, the anisotropic size of the final tunneling magnetic resistance is controllable by the electric field. In addition, the amplitude of the anisotropy of the magnetic resistance is obviously improved by a magnitude as compared with the prior art, which provides the necessary theoretical guidance for future production of the multi-state data memory device. Then we discussed the Seebeck and the spin Seebeck effect in the multi-tunnel junction in the third chapter. the presence of a spin-orbit coupling is found such that the thermoelectric coefficients of the system exhibit the anisotropy of the magnetization direction dependence and, by further calculation, the system has a relatively high quality factor (1), The structure is therefore expected to be applied to the production of high-efficiency thermoelectric and thermal spin devices. In the fourth chapter we study the effect of magnetoelectric effect on the magnetic dissipation in the ferromagnetic layer of the normal metal/ ferroelectric/ ferromagnetic tunnel junction, taking into account the possible magnetoelectric interaction at the ferroelectric/ ferromagnetic heterojunction interface. It was found that the presence of the spin-orbit coupling resulted in the Gillbert damping exhibiting a C2v double symmetry and the magnitude of the Gillbert damping value also changed when the direction of the ferroelectric polarization was reversed. In the fifth chapter, we studied the effect of the spin-orbit coupling on the tunneling spin-Hall effect and the abnormal Hall effect on the premise of not considering any impurity effect. In the last chapter, we sum up all the research contents and look forward to the next work.
【学位授予单位】:兰州大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O469

【相似文献】

相关期刊论文 前10条

1 刘邦尧;约瑟夫逊隧道结[J];低温与超导;1975年02期

2 徐明;金属-氧化物界面在磁隧道结中的作用[J];物理;2000年05期

3 王兵,鲁山,杨金龙,侯建国,肖旭东;纳米隧道结的量子电容现象[J];物理;2002年04期

4 王文梁,李玲,谢征微;含磁性非磁性金属插入层磁隧道结的隧穿特性研究[J];四川师范大学学报(自然科学版);2005年02期

5 孙萍;吴银忠;;空间相对位置对复合铁电隧道结的电输运影响[J];常熟理工学院学报;2010年08期

6 孟小凡,郭维新,崔广霁;薄膜隧道结的漏洞分析和金相筛选法[J];低温物理;1979年01期

7 杨森祖,吉争鸣,程其恒;采用悬挂的光刻胶掩膜制作小面积隧道结[J];低温与超导;1983年02期

8 黄强,吴培亨;约瑟夫逊隧道结可调脉冲发生器[J];低温与超导;1985年04期

9 王世光;用微小的隧道结探测单电子的效应[J];物理;1989年03期

10 江孟蜀,许世杰,郑克勤;增强金属—氧化物—金属隧道结的光发射[J];发光学报;1995年04期

相关会议论文 前10条

1 郑鸿;杨成韬;;双层磁电复合材料有限元仿真[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年

2 冯岩;郑世杰;;磁电弹性结构自由振动的有限元仿真[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年

3 陈明明;董春迎;;磁电弹介质夹杂界面上的磁电平衡条件[A];北京力学会第17届学术年会论文集[C];2011年

4 金雪松;I.V.Shvets;Ciaran M~cEvoy;;全外延Fe/MgO/Fe_3O_4/MgO(100)隧道结的生长及界面粗糙度相关性的研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年

5 魏建萍;苏先樾;;用积分平均方法求解磁电弹性空心圆柱体中波的轴向传播[A];祝贺郑哲敏先生八十华诞应用力学报告会——应用力学进展论文集[C];2004年

6 韩学礼;;磁电弹双材料中三维位错形成的耦合场分析(英文)[A];北京力学会第19届学术年会论文集[C];2013年

7 董春迎;;磁电弹圆环板的三维自由振动分析[A];北京力学会第14届学术年会论文集[C];2008年

8 权红英;董丽杰;熊传溪;;PVDF基夹层磁电复合材料的制备和性能研究[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年

9 朱涛;詹文山;沈峰;张泽;John Q. Xiao;;磁隧道结中势垒层的显微结构和电子全息研究[A];第四届全国磁性薄膜与纳米磁学会议论文集[C];2004年

10 钟献词;李显方;;磁电弹性介质中圆形裂纹诱导的完全场[A];第二届全国压电和声波理论及器件技术研讨会摘要集[C];2006年

相关重要报纸文章 前7条

1 徐汉东;庐江出台优惠政策助推磁电产业发展[N];巢湖日报;2007年

2 杨立生邋刘宏伟;庐江磁电产业“明珠”闪耀[N];巢湖日报;2007年

3 记者 徐懿;时时创新提升企业抗风险能力[N];抚顺日报;2009年

4 张安 程然;攻坚克难求发展[N];中煤地质报;2011年

5 记者 潘少婷;嘉达磁电投2.8亿元逆势扩产[N];东莞日报;2012年

6 本报记者 陆本,

本文编号:2435184


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2435184.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5d173***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com