强自旋轨道耦合体系的第一性原理研究
[Abstract]:The spin-orbit coupling interaction is a relativistic effect that is exhibited by the electrons. In 2005, Kane et al. found that the spin-orbit coupling interaction can lead to the phase transition of the topological insulator, and the spin-orbit coupling interaction is more and more important in the condensed state. The size of the spin-orbit coupling interaction is proportional to the number of atomic nuclei, so the larger the atomic number, the greater the interaction of the spin-orbit coupling. As a result, for the compounds of the sixth cycle and the elements of the fifth cycle, we need to consider the spin-orbit coupling interaction. The 5d transition metal oxide is extended in real-space distribution compared to the 3d and 4d systems, so the electron association U is relatively 3d, The 4d transition element is relatively small. It is contemplated that the system will be changed from the insulator to the metal from 3d to 5d. However, many 5d system exhibit insulator behavior since that 5-d transition group element tend to have strong spin-orbit coupling interaction. The 5-d transition metal oxide contains rich physics under the condition of the interaction of the spin-orbit coupling and the electron correlation and the interaction of the lattice. Such as mott insulators, complex magnetic, topological insulators, weyl semi-metals, and the like. For heavy elements Bi, Pb, Te, Sb, Sn, and the like, their spin-orbit coupling interaction is also strong, so many topological insulators contain these heavy elements, such as HgTe/ CdTe quantum wells, Bi2Se3, and the like. In addition to the topological insulator, a topology-protected semi-metal is also found. The topology semi-metal is now divided into three groups: Dirac semi-metal, Weyl half-metal, and node-line semi-metal. The Dirac point and the Weyl point in the Dirac semi-metal and the Weyl semi-metal are distributed discretely in the momentum space and the number is limited. Their surface states are characterized by a fermi arc. The Dirac semimetal is transformed into Weyl semimetal at break time inversion or space inversion symmetry. While the energy bands of the node-line semi-metal intersect in the vicinity of the fermi surface and the intersection point has a plurality of intersection points which are connected in a line in the reverse space. For the ideal node-line half-metal, all the intersections are on the same energy plane, then its surface state is a flat band. This provides a platform for the study of superconducting and fractional quantum Hall effects. It is of great significance to find the material of the strong spin-orbit-coupled interaction system and to study the rich physical properties of these materials. Based on the density functional theory, the tight-binding model and the k-p perturbation theory, we study the material of several kinds of strong spin-orbit coupling: we first study the 5-d transition metal compound, NaOO3, and find that it is a new three-dimensional Slater insulator. We have systematically calculated the electronic structure of NaOO3 and searched its magnetic structure and found that its magnetic ground state is G-type anti-ferromagnetic. The spin-orbit coupling interaction does not allow the system to open the energy gap, and the same electron correlation does not allow the system to open the energy gap. When the system is in the G-type antiferromagnetic state, an energy gap is opened, which proves that NaOO3 is a three-dimensional Slater insulator. The magnetic structure of our theory is then confirmed by the experiment. Secondly, we have predicted a new three-dimensional Dirac semimetal BaYBi (Y = Cu, Ag, Au). This kind of Dirac semi-metallic material is stable, the composition is not highly toxic, and it brings great convenience for experimental research and industrial application. The electron structure of BaCuBi and BaAgBi is similar to that of BaAgBi: the 6p band of Bi forms a reverse band structure through the Ag-5s (Cu-4s) band at the r point under the combination of the spin-orbit coupling interaction and the crystal field, and the intersection point (Dirac point) is formed along the F-A. While the anti-tape structure of the baaubi occurs between the 6p bands of bi. We have also discussed doping so that this three-dimensional Dirac semimetal becomes a Weyl semi-metal. Then we discussed the electronic structure and surface state of Weyl semi-metal NbP. NbP is a member of the recently discovered non-center-inverted Weyl semi-metallic TaAs family. When the NbP is coupled without a spin-free track, the energy band forms a node-line under mirror symmetry protection. When the spin-orbit coupling interaction is taken into account, each node-line evolves into an opposing Weyl point. Their surface state has a particular tadpole shape. Our theoretical calculation results are in good agreement with the results of the ARPES experiment. By selecting a closed curve and looking at the number of times this closed curve crosses the Fermi surface, we finally determine that NbP is a Weyl half-metal. In the end, we find that the binary compound CaTe of the CsCl structure is a node-line semi-metal when the spin-orbit coupling interaction is neglected. It has three mutually perpendicular node-lines, and the three nodes-line are all near the M-point. We studied the surface state of the node-line semi-metal, and found that its surface state is the same two-dimensional flat belt as the drum surface. This provides a platform for the study of superconducting and fractional quantum Hall effects. When the spin-orbit coupling interaction is applied, this topology node-line half-metal becomes a Dirac semi-metal. The three node-line of it will open the energy gap, leaving the intersection only on the M-R line. This intersection is stabilized by the symmetry of the C4 rotation symmetry on the M-R line. If the C4 rotational symmetry is broken, such as the addition of stress, then this three-dimensional Dirac semi-metal will evolve into a strong topological insulator.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O469
【相似文献】
相关期刊论文 前10条
1 杨军;戴斌飞;李霞;;自旋轨道耦合效应及其应用研究[J];大学物理;2011年08期
2 郝正同;;基于自旋轨道耦合效应的能带分裂机理[J];绵阳师范学院学报;2012年05期
3 张磊;李辉武;胡梁宾;;二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究[J];物理学报;2012年17期
4 储连元;原子核内的自旋轨道耦合[J];物理学报;1958年06期
5 刘汉昭;包括自旋轨道耦合能和作为动量函数的位能在内的汤、费模型及其在原子核中的应用[J];物理学报;1960年06期
6 王元;庄勤;;1f_(7/2)壳层不同种核子组态核能谱与两体自旋轨道耦合作用[J];高能物理与核物理;1985年05期
7 陈小暑;张庆营;;两体自旋轨道耦合力与f_(7/2)壳层能谱[J];高能物理与核物理;1979年04期
8 冯俊生;;自旋轨道耦合作用下的电子双折射研究[J];安徽教育学院学报;2007年03期
9 孙庆丰;谢心澄;王健;;存在自旋轨道耦合的介观小环中的持续自旋流[J];物理;2007年11期
10 杨杰;董全力;江兆潭;张杰;;自旋轨道耦合作用对碳纳米管电子能带结构的影响[J];物理学报;2011年07期
相关会议论文 前5条
1 孙庆丰;谢心澄;郭鸿;王健;;自旋轨道耦合和自旋流[A];量子电荷和自旋输运研讨会论文集[C];2005年
2 张庆营;;非中心力矩阵元的公式(续)[A];第五次核物理会议资料汇编(中册)[C];1982年
3 刘计红;李玉现;;自旋轨道耦合对正常金属/半导体/超导体隧道结中的散粒噪声的影响[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
4 董衍坤;张红梅;李玉现;;自旋轨道耦合对Aharonov-Bohm测量仪中自旋相关输运的影响[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
5 和音;腾礼坚;巫光汉;王凡;;夸克互作用势的唯象研究 Ⅱ.自旋轨道耦合力的影响[A];第五次核物理会议资料汇编(下册)[C];1982年
相关博士学位论文 前10条
1 付正坤;量子简并费米气体中的自旋轨道耦合[D];山西大学;2014年
2 梁海星;基于SrTiO_3氧化物界面的光伏与自旋轨道耦合效应[D];中国科学技术大学;2015年
3 杜永平;强自旋轨道耦合体系的第一性原理研究[D];南京大学;2016年
4 崔靖鑫;自旋轨道耦合冷原子费米气体中的量子效应及其应用[D];清华大学;2013年
5 段皓;具有各向同性自旋轨道耦合的两体散射研究[D];清华大学;2013年
6 琚伟伟;过渡金属团簇及氧化物自旋轨道耦合效应及电子态的理论研究[D];复旦大学;2012年
7 张进一;量子气体在自旋轨道耦合下的实验研究[D];中国科学技术大学;2013年
8 王春明;二维自旋轨道耦合系统中自旋霍尔效应以及相关输运性质的研究[D];上海交通大学;2008年
9 李源;具有自旋轨道耦合的二维电子系统自旋动力学的研究[D];浙江大学;2008年
10 任莉;自旋轨道耦合的二维电子气中自旋输运相关性质的研究[D];复旦大学;2008年
相关硕士学位论文 前10条
1 要晓腾;自旋轨道耦合效应下量子环链的自旋输运性质[D];河北师范大学;2015年
2 王俊;具有自旋轨道耦合的一维冷原子费米气中的量子相以及无序效应研究[D];浙江师范大学;2015年
3 张旭华;一维光晶格中费米气体的量子相变[D];山西大学;2015年
4 赵龙;低维自旋轨道耦合费米气体的BCS-BEC渡越[D];山西大学;2015年
5 韩虹;基于DMRG算法的自旋轨道耦合费米气体的相变研究[D];山西大学;2014年
6 周晓凡;一维光学晶格中的自旋—轨道耦合费米气体[D];山西大学;2014年
7 厉建峥;强自旋轨道耦合化合物Sr_2IrO_4的制备与掺杂研究[D];南京邮电大学;2015年
8 王敏;自旋轨道耦合串联双量子点体系的全计数统计[D];太原理工大学;2016年
9 吕纯海;一维量子费米气体中的自旋轨道耦合效应[D];兰州大学;2013年
10 胡丽云;半导体自旋轨道耦合作用下电子自旋输运性质的研究[D];湖北大学;2012年
,本文编号:2442299
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2442299.html