高寒草甸植物群落结构组建和生产力对施肥的响应机制
[Abstract]:Community construction has been a core problem of ecological research and has a long history in the study of ecology. However, the mechanism on the construction of the community has not been very clear. The controversy between the theory of ecology and the theory of neutral in the beginning of this century has always been a problem for researchers, from a long-time theory of body theory and individual theory. The problem of the researchers has been that the process of community construction is the process of certainty and the process of randomness. The ultimate purpose of the study community construction mechanism is to explain and predict the change in the ecosystem function, in particular the change in productivity associated with human life. The productivity of the alpine meadow in the Qinghai-Tibet plateau is the nitrogen limitation or the phosphorus limitation? How can the productivity of the alpine meadow change in the context of climate change? What is the community construction mechanism behind this change? These are the questions we urgently need to answer. In order to study the above problems, we set up two fertilization experiments with different fertilizers and different gradients in the alpine meadow located in the eastern part of the Qinghai-Tibet Plateau. Six functional traits (height, specific leaf area, leaf dry matter content, seed size, leaf nitrogen content and leaf phosphorus content) of 24 major component species in different treatments were determined to determine the abundance of species in the community, The main physical and chemical properties of the soil (quick-acting nitrogen, quick-acting phosphorus, pH, soil moisture content and soil temperature) were measured. The analysis methods such as single factor analysis of variance, standard principal axis regression, general linear model, structural equation model and phylogenetic independence analysis are used to analyze our data systematically. The results showed that:1. The productivity of the alpine meadow community was limited by both nitrogen and phosphorus, and the nitrogen was the first limiting nutrient, and the phosphorus became a limiting nutrient after the nitrogen limitation was released. The productivity of the alpine meadow is not limited by the potassium. The competition process represented by the light competition is common in the alpine meadow community, especially in the community construction after the application of the nitrogen fertilizer. The results of our study show that in the alpine meadow community, simple but important ecological functional traits can be used to explain and predict the multi-degree change of species after fertilization.3. The competition-diffusion trade-off is an important mechanism for the construction of the alpine meadow community. Most of the species in the community are either competitive or competitive, but not both competitive and proliferation. The influence of the competition-diffusion trade-off on the abundance distribution of species depends on the spatial scale. The diversity and functional diversity of the three different types of diversity are combined. The important theory of the relationship between the productivity and the diversity of the hypothesis of mass ratio and the complementary hypothesis of the niche is to play a role in the community after fertilization, and the relationship between them is complementary rather than mutually exclusive. In the community of fertilization and in the control community, there is a generally deterministic trait-multi-degree relationship, which indicates that the deterministic process based on the character plays a very important role in the construction of the natural community and the fertilization community. In the community construction after fertilization, the two opposite processes play a role in environmental screening and competition. The environmental screening plays a major role in the low-concentration nitrogen addition treatment, but with the increase of the addition gradient of the nitrogen fertilizer, the competition and elimination process is continuously enhanced, and the two opposite processes are balanced in the high-concentration nitrogen addition. The application of P fertilizer has no effect on the construction of the alpine meadow community.
【学位授予单位】:兰州大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q948.1
【相似文献】
相关期刊论文 前10条
1 杨维平;菌根菌——影响植物群落结构的又一重要因素[J];生物学教学;2002年04期
2 黄良美;黄玉源;黎桦;李建龙;王佳卓;;南宁市植物群落结构特征与局地小气候效应关系分析[J];广西植物;2008年02期
3 衣官平;卓丽环;汪成忠;张依;;园林植物群落结构及生态功能分析[J];上海交通大学学报(农业科学版);2009年03期
4 李雪;闫红伟;;沈水湾公园典型植物群落结构调查与研究[J];中国农学通报;2010年09期
5 刘宇;李宗璞;;宿迁学院校园植物群落结构及景观特点分析[J];安徽农业科学;2011年31期
6 周希;唐岱;;昆明金棱河公园植物群落结构调查[J];绿色科技;2013年02期
7 李宽意;刘正文;李传红;刘桂民;杨宏伟;;螺类牧食损害对沉水植物群落结构的调节[J];海洋与湖沼;2007年06期
8 董素君;赵林森;;昆明世博生态城半山邻里植物群落结构分析[J];中国园艺文摘;2014年02期
9 许加星;徐力刚;姜加虎;王晓龙;陈宇炜;徐进;;鄱阳湖典型洲滩植物群落结构变化及其与土壤养分的关系[J];湿地科学;2013年02期
10 熊韶俊;植物群落结构沿不同梯度之趋同性:湖岸等同于倒置的山体吗?[J];生态学杂志;1993年05期
相关会议论文 前4条
1 周国英;陈桂琛;陈志国;韩有吉;孙菁;;青藏铁路沿线高寒草甸植物群落结构对人为干扰梯度的响应[A];三江源区生态保护与可持续发展高级学术研讨会论文摘要汇编[C];2005年
2 张囡囡;范亚文;;洪河湿地硅藻植物群落结构及其环境相关性的研究[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年
3 谷勇;李军;寸守权;张珍荫;廖声熙;袁岳伟;;丽江文笔山植物群落结构的研究[A];中国生物多样性保护与研究进展Ⅵ—第六届全国生物多样性保护与持续利用研讨会论文集[C];2004年
4 惠洪宽;范亚文;;黑龙江呼兰河湿地夏季藻类植物群落结构及其分布特点的初步研究[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年
相关博士学位论文 前1条
1 周小龙;高寒草甸植物群落结构组建和生产力对施肥的响应机制[D];兰州大学;2016年
相关硕士学位论文 前10条
1 王爱爱;汾河中下游藻类植物群落结构及水质评价[D];山西大学;2014年
2 肖智顺;大庆新华湖藻类植物多样性及其环境相关性初步研究[D];哈尔滨师范大学;2016年
3 郑凯;安西极旱荒漠区植物群落结构变化规律及其机理研究[D];兰州大学;2013年
4 高倩;桂西南岩溶地区植物群落结构特征与景观恢复[D];中南林业科技大学;2013年
5 白春花;北方高校校园绿地植物群落结构特征的研究[D];内蒙古农业大学;2009年
6 张倩;环境条件对沉水植物群落结构和生产力的影响[D];北京林业大学;2012年
7 张骞;庙岛群岛植物群落结构研究[D];山东师范大学;2008年
8 李伦;湖南省石燕湖森林公园植物群落结构与林相改造研究[D];中南林业科技大学;2014年
9 王钰鑫;青藏高原植物保育作用对其冠层下植物群落结构以及土壤理化性质的影响[D];兰州大学;2013年
10 庄杰;舟山海岛典型植物群落结构及优化对策研究[D];浙江农林大学;2012年
,本文编号:2449627
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2449627.html