新型人工材料中量子系统的动力学演化及非经典性质
[Abstract]:The excitation atoms in the vacuum, due to the influence of the uniform fluctuation electromagnetic mode, will spontaneously radiate the photons and transition from the excited state to the ground state. After recognizing the self-emitting process of the material capable of modifying the atoms, the effect of a variety of new materials on the vacuum environment has been initiated. With the development of experimental production technology, new types of artificial materials, such as metal materials, topological insulators, and graphenene, were prepared before and after 2004. In which the specific material is designed and prepared on a cognitive framework based on natural materials, and has unique optical properties such as negative refractive index and electromagnetic transparency. In the topological insulator, when the time inversion symmetry of the inept surface state is destroyed, the optical property of the topological insulator is affected by the modification of the topological quantity, and special electromagnetic phenomena such as the Faraday rotation effect can be displayed. In the graphene thin layer, the optical properties in different frequency bands can be controlled by adjusting the concentration and the type of the gate voltage or the chemical doping. In the terahertz frequency band, the graphene will exhibit the nature of the metalloid and support the propagation of the surface plasma mode. In this paper, the properties of atom self-emission in different materials are studied in this paper, and the entanglement, quantum interference and resonance fluorescence spectrum compression of atoms in different materials are studied in this paper. First, we have studied the entanglement of two two-level system in the zero-refractive material. Wherein the zero-refraction material consists of two different types of single-negative material plates with the same thickness. In order to be able to excite the surface field at the junction of the two plate materials and to generate a strong coupling, we place the atomic pairs near the interface. It is assumed that the system is in a single excited state. According to the Schrodinger equation, the probability amplitude evolution equation of the system is obtained without the Markov approximation. When the thickness of the material is much larger than the characteristic length of the surface field, the green function can be simplified and has an analytical expression. By solving the motion equation of the system, it is known that there is a critical value, and when the interaction intensity of the symmetric mode, the antisymmetric mode and the surface field is at both ends, the system will exhibit different dynamic properties. In particular, the evolution of the system will show the Markov behavior and the non-Markov behavior under strong interaction, respectively. The entanglement of the system is affected by the initial state, which will show the gradual attenuation from the entangled state until it disappears or gradually increases with time, and keeps the characteristics for a long time. In addition, when the transition frequency of the atom and the resonance frequency of the surface field are detuned, entanglement can still be generated if the inter-correlation of the atoms is strong. Secondly, we study the quantum interference effect of three-level Zeeman atom in the optical microcavity composed of topological insulator. Due to the existence of the topological electromagnetic effect, when the length of the micro-cavity is less than half a vacuum wavelength, the dipole transition of the atoms parallel to the cavity mirror is suppressed, and the dipole transition in the vertical direction is strengthened. And when the topological electromagnetic effect is very strong, the dipole radiation parallel to the cavity mirror disappears completely, and the atoms in the cavity can generate extremely strong quantum interference effect. If the length of the micro-cavity is increased, due to the non-uniform distribution of the electromagnetic field in the cavity, the intensity of the quantum interference at this time is dependent on the position of the atom in the cavity, and the wave characteristic after the superposition of the coherent electromagnetic wave is presented. In practice, a certain amount of energy loss will be present in the material. The results show that this loss has a great effect on the spontaneous emission of atoms in a small area near the cavity mirror. Thus, when the atom is in the region, the contribution of other electromagnetic modes to the spontaneous emission is less than the effect of the dissipation on the atoms, and the quantum interference effect will be destroyed and greatly reduced. After the atom is far from the cavity mirror, the effect of loss on the quantum interference will gradually disappear, and the corresponding condition is basically the same as that of no loss. Finally, we discuss the radiation properties of two-level quantum dots near the surface of the graphene. In the terahertz frequency band, the Purcell coefficient of the quantum dot shows an approximate lorentz-type distribution along with the frequency change. And, with the increase of the ambient temperature, the distribution will tend to average while the Purcell coefficient decreases at zero temperature. The quantum dots are placed in the working area of the surface plasma field, and by adjusting the intensity and the center frequency of the pumping laser field, when the two transition channels corresponding to the modified quantum dots decay at different rates, the resonance fluorescence spectrum will exhibit a compression phenomenon. And the distance between the quantum point and the graphene is appropriately reduced, so that the coupling strength of the quantum dot and the surface field is increased, and the damage to the compression can be overcome by overcoming the quantum dot rejection coherence effect. When the distribution of the modified quantum dots is great, the experimental parameters can be reasonably selected, and the compression strength at room temperature will be more than zero temperature. In addition, even at room temperature, by adjusting the Fermi energy of the graphene and the intensity and the center frequency of the pump light field, the compression phenomenon in the quantum dot fluorescence spectrum can be greatly enhanced.
【学位授予单位】:华中师范大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O413
【相似文献】
相关期刊论文 前10条
1 王治国;高童童;谭为;;微带线系统中基于相位耦合机制的类量子干涉行为[J];南昌航空大学学报(自然科学版);2012年01期
2 孙萌涛,田红梅,沙国河;转动传能中的量子干涉:干涉角和相对速度的关系(英文)[J];化学物理学报;2002年03期
3 孙真荣,王祖赓;分子及分子-原子混合系统中的量子干涉效应[J];量子电子学报;2004年02期
4 关洪;量子干涉效应[J];物理;1983年04期
5 吴锦捫,赵泓;意识与量子干涉——一个实验性的探讨[J];自然杂志;1983年02期
6 高韶燕,李福利;量子干涉效应对原子共振荧光非经典特性的影响[J];原子核物理评论;2002年02期
7 王立,张小安,牛超英;四能级混合共振系统量子干涉现象理论分析[J];雁北师范学院学报;2003年02期
8 杨希华,孙真荣,丁良恩,王祖赓;基于碰撞产生的频域和时域内的量子干涉效应研究[J];量子光学学报;2004年S1期
9 李永庆,陈跃辉,李春霞,马凤才;转动传能中的量子干涉——干涉角和转动量子数的关系[J];原子与分子物理学报;2005年04期
10 韩红培;王国志;;低频调制场中钾原子的量子干涉效应[J];河南师范大学学报(自然科学版);2007年02期
相关会议论文 前10条
1 杨希华;孙真荣;丁良恩;王祖赓;;基于碰撞产生的频域和时域内的量子干涉效应研究[A];第十一届全国量子光学学术会议论文摘要集[C];2004年
2 羊亚平;许静平;陈鸿;朱诗尧;;左手性材料对量子干涉的影响[A];第十三届全国量子光学学术报告会论文摘要集[C];2008年
3 李永放;钮月萍;;量子干涉效应与四波混频相互作用的研究[A];第六届全国光学前沿问题研讨会论文摘要集[C];2003年
4 郑仕标;;一种制备囚禁离子运动的宏观量子干涉态的方法[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年
5 周鲁;谭荣;李高翔;;两平行板间的三能级原子衰变通道之间的量子干涉[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年
6 曾小东;许静平;羊亚平;;磁单负材料板附近原子量子干涉的加强[A];第十五届全国量子光学学术报告会报告摘要集[C];2012年
7 杨希华;孙真荣;曾和平;丁良恩;王祖赓;;原子—分子体系中多能级系统的量子干涉效应[A];第九届全国量子光学学术报告会摘要集(Ⅱ)[C];2000年
8 吴美娟;吴令安;;参量下转换光子与次生和频光子之间的四阶量子干涉实验方案[A];第七届全国量子光学学术报告会论文摘要集[C];1996年
9 苗刚;马凤才;;原子-双原子分子体系碰撞诱导中的量子干涉效应[A];第十五届全国原子与分子物理学术会议论文摘要集[C];2009年
10 许静平;王立刚;羊亚平;林强;朱诗尧;;利用一维光子晶体使V型Zeeman原子发生完全量子干涉[A];第十三届全国量子光学学术报告会论文摘要集[C];2008年
相关重要报纸文章 前1条
1 本报记者 张梦然;“量子力学在哪?你正沉浸其中”[N];科技日报;2012年
相关博士学位论文 前8条
1 方炜;新型人工材料中量子系统的动力学演化及非经典性质[D];华中师范大学;2016年
2 孙萌涛;碰撞诱导转动传能中的量子干涉效应理论研究[D];中国科学院研究生院(大连化学物理研究所);2003年
3 郑军;电磁感应介质的量子干涉效应研究[D];南昌大学;2009年
4 马瑞琼;量子干涉效应与量子态测量的理论研究[D];陕西师范大学;2009年
5 邓乐;分子多能级系统量子干涉效应研究[D];华东师范大学;2000年
6 张衍亮;原子、分子和离子多能级系统中的量子干涉及光辐射研究[D];华东师范大学;2002年
7 赵顺才;基于量子干涉效应的低吸收负折射率介质及相关研究[D];南昌大学;2011年
8 刘杰;乙烯酮的光解动力学研究和CO-HCI碰撞传能中的量子干涉效应实验研究[D];中国科学院研究生院(大连化学物理研究所);2005年
相关硕士学位论文 前10条
1 张双颖;基于量子干涉的二维负折射效应研究[D];昆明理工大学;2015年
2 张小安;四能级系统中的量子干涉[D];陕西师范大学;2000年
3 曾福华;多能级系统中基于量子干涉效应下的量子调控[D];南昌大学;2007年
4 陈峻;多能级系统中的量子干涉效应[D];南昌大学;2007年
5 张振清;多能级原子系统中量子干涉效应的研究[D];南昌大学;2011年
6 曹谨丰;中间态引入量子干涉的多光子共振多波混频[D];河北大学;2009年
7 赵艳辉;光场中原子的宏观量子干涉[D];东北师范大学;2009年
8 贾久峰;四能级系统中量子干涉效应的研究[D];大连理工大学;2010年
9 蔡立锋;量子干涉在光与原子相互作用中的理论及应用[D];国防科学技术大学;2005年
10 方慧娟;多能级原子系统中的量子调控[D];南昌大学;2008年
,本文编号:2487273
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2487273.html