探索软芯系统的相行为:二维熔化及准晶的自组装
[Abstract]:The most outstanding characteristics of the soft matter-flexibility and complexity make the soft material present especially interesting physical phenomena, in particular the self-assembly behavior of the soft material. The complexity of the soft material allows it to self-assemble into a more complex material structure under certain conditions, the flexibility of which results in the final substance form of the self-assembled structure being determined by a variety of interactions. The in-depth study of the self-assembly of soft material not only helps us to understand the phase-change behavior between different phases, but also provides a new way for designing materials with special functions. In many research directions, the formation of two-dimensional melting and soft quasicrystal has been a popular content of soft condensed matter physics. In this paper, we mainly study the properties of the two-dimensional solid-liquid phase transition and the self-assembly behavior of the quasicrystal. In the introduction of the first chapter, we first introduce the important characteristics of soft matter and its main research direction. Then we focus on the self-assembly and self-assembly of the soft material from the two aspects of the self-assembly classification and the self-assembly form of the soft material. In many self-assembly research directions, we focus on the self-assembly of two-dimensional melting and quasicrystal. The KTHY theory is an important theoretical basis for the current understanding and analysis of two-dimensional melting. Based on the assumption and conclusion of the two-dimensional solid and the KTHY theory, and some research results, the important contents of the two-dimensional melting are introduced in detail, and the two-dimensional melting phase-change properties and the different material states are listed from the two aspects of the structural and dynamic characteristics of the two-dimensional melting. In the end, with the development of the quasicrystal, the high-dimensional space model, the important physical characteristics and the two important quasi-crystal structures of the quasi-crystal are introduced. It is an important way to study and solve a series of problems in the quasi-crystal by linking the quasi-crystal and the soft material to the soft quasicrystal. The component particles of different physical properties have a great effect on the macroscopic properties of the soft material. In the second chapter, we first introduce two commonly used soft-particle models, hard-core soft-shell model and super-soft model, and its typical phase behavior. Then, we analyze the typical hypersoft system and its phase behavior. In the third chapter, we study the two-dimensional melting of three different soft-core systems capable of re-melting. In the phase diagram of this kind of soft-core system, there is a maximum melting temperature, Tm, and the corresponding density is 1. m. By analyzing the isothermal state equation and its finite-scale effect, and using the directional correlation function and the position correlation function to determine the state of each object, we find that on the ppm side, The transition of the hexagonal phase-liquid is non-continuous, there is phase separation, and the density of the coexistence zone decreases with increasing temperature and tends to disappear at the maximum melting temperature Tm. The phase-change properties between the hexagonal phase and the liquid are continuous on one side of the ppm. Further, by analyzing the maximum direction correlation length of the liquid, we determine that the maximum melting temperature Tm is a watershed of two phase change property types. More directly, we clearly see the coexistence phase and the pure hexagonal phase by an intuitive instantaneous bit pattern. These results show that the soft-core system with the maximum melting temperature can exhibit both a discontinuous hexagonal phase-liquid transition and a continuous hexagonal phase-liquid transition. In the conventional quasi-crystal formation method, a variety of competing length scales are considered indispensable, whether directly provided by the interaction potential or hidden in the particle size or shape. In the fourth chapter, we follow a purely repulsive and isotropic soft-core model in the third chapter, and the existence of the eight-axis and the twelve-axis symmetric quasicrystal is found. By analyzing the position-type structure of the quasicrystal, we find that the pentagonal shape is the basic element for forming the quasi-crystal order. The importance of the pentagons is further confirmed by analyzing the dynamics of the quasicrystal and the structure of the liquid before the formation of the solid. We then determine that our quasicrystal is stable by studying the dependence of the quasi-crystal on the path, and the comparison of the potential energy of the different solid structures. In the end, we simply analyze the phase-change properties of the quasicrystal and its vibration characteristics. Our results provide an inconceivable simple path for the formation of the quasicrystal, and the theoretical understanding of the alignment crystal presents a challenge. In the fifth chapter, we sum up the thesis and look forward to the future work.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O469
【相似文献】
相关期刊论文 前10条
1 孟庆斌;刘克良;;肽类自组装研究进展[J];化学进展;2009年11期
2 杜世萱;季威;高鸿钧;;功能纳米结构可控生长的新途径:非模板选择性自组装[J];物理;2007年06期
3 周庆翰;林娟;罗建斌;;一种纳米多肽材料的自组装结构与机制研究[J];西南民族大学学报(自然科学版);2011年03期
4 蔡田田;孙凯;谢佳乐;唐涛良;王俊忠;;量子尺寸效应诱导的选择性分子吸附和自组装结构[J];西南师范大学学报(自然科学版);2012年09期
5 王彬,蔡继业,孙彩军,冯倩,曾谷城,梁志红,潘善培;用AFM对质粒DNA在云母表面的自组装研究[J];暨南大学学报(自然科学与医学版);2004年03期
6 何晓青,蔡继业,赵涛,王小燕,梁志红;Ⅰ型胶原蛋白在云母表面自组装的AFM研究[J];生物技术;2004年02期
7 徐善东,雷圣宾,曾庆祷,王琛,万立骏,白春礼;4,5-二-十二巯基邻苯二腈在石墨表面的二维自组装结构[J];科学通报;2003年05期
8 张成;杨静;许进;;自组装DNA/纳米颗粒分子逻辑计算模型[J];科学通报;2011年27期
9 路继群;闫存极;严会娟;万立骏;;1,3,2-Dioxaborine衍生物在石墨表面的二维自组装结构[J];科学通报;2007年10期
10 周群,李晓伟,周耀国,赵宏,季媛,郑军伟;二维自组装结构中银纳米粒子的吸收光谱特征[J];光散射学报;2004年04期
相关会议论文 前10条
1 闫学海;朱朋莉;李峻柏;;二肽自组装[A];第一届全国生物物理化学会议暨生物物理化学发展战略研讨会论文摘要集[C];2010年
2 张关心;张德清;朱道本;;四硫富瓦烯共轭分子的设计合成与自组装研究[A];全国第八届有机固体电子过程暨华人有机光电功能材料学术讨论会摘要集[C];2010年
3 李燕;徐蕊;何学浩;;二元粒子自组装的动力学研究[A];2013年全国高分子学术论文报告会论文摘要集——主题B:高分子理论、计算与模拟[C];2013年
4 周亭;杨延莲;王琛;徐桂英;;两亲性多肽的自组装结构及其与DNA的相互作用[A];中国化学会第十四届胶体与界面化学会议论文摘要集-第1分会:表面界面与纳米结构材料[C];2013年
5 周鹏;徐海;吕建仁;;离子互补肽自组装结构研究——实验和模拟[A];中国化学会第十三届胶体与界面化学会议论文摘要集[C];2011年
6 杨秋艳;陈加福;许群;;球形自组装结构的制备及其在超临界CO_2下的稳定化研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
7 程礼盛;曹达鹏;;刚柔两嵌段共聚物在纳米狭缝孔中的自组装研究[A];中国化学会第26届学术年会超分子组装与软物质材料分会场论文集[C];2008年
8 刘鸣华;;小分子凝胶的自组装结构调控、超分子手性与功能化[A];中国化学会第十四届胶体与界面化学会议论文摘要集-大会报告[C];2013年
9 延辉;苑世领;刘成卜;;阴离子表面活性剂自组装结构的分子动力学模拟[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年
10 廖烈强;谢星星;严章强;刘启昊;严慧玲;柳辉金;罗序中;;超分子有机凝胶中自组装结构的调控[A];中国化学会第29届学术年会摘要集——第18分会:超分子组装与软物质材料[C];2014年
相关重要报纸文章 前3条
1 冯卫东;“积木”搭出活器官[N];科技日报;2008年
2 刘霞;纳米壳自组装结构呈独特光学性能[N];科技日报;2010年
3 常丽君;DNA—纳米粒子自组装胶体可带来智能材料[N];科技日报;2013年
相关博士学位论文 前10条
1 崔丽华;分子间弱键诱导二维自组装纳米结构的形成与调控机制研究[D];华南理工大学;2015年
2 张冬;熵焓共同作用下纳米粒子/高分子复合体系的自组装[D];浙江大学;2015年
3 林宗琼;对称性破缺驱动下螺环芳烃纳米晶半导体的多尺度自组装与光电性质[D];南京邮电大学;2015年
4 汪羽翎;树形多臂共聚物溶液自组装的耗散粒子动力学研究[D];上海交通大学;2015年
5 查宝;弱键调控噻吩并菲衍生物在固液界面的二维自组装纳米结构及其形成机理[D];华南理工大学;2016年
6 祖梦婕;探索软芯系统的相行为:二维熔化及准晶的自组装[D];中国科学技术大学;2017年
7 王净;两亲性多肽的合成、自组装和界面吸附研究[D];中国石油大学;2010年
8 侯嘉骅;模板辅助多肽自组装的研究[D];内蒙古农业大学;2015年
9 韩亮;荧蒽衍生物的合成、发光及自组装性质的研究[D];吉林大学;2015年
10 王晓光;鸟嘌呤核苷衍生物的自组装[D];吉林大学;2010年
相关硕士学位论文 前10条
1 樊树峰;具有不同刚棒构筑单元的刚棒—线团分子的合成及自组装性质的研究[D];延边大学;2015年
2 温智廷;热响应型刚棒—线团分子的合成及其自组装性质的研究[D];延边大学;2015年
3 张婷婷;酞菁锰自组装薄膜生长机制研究[D];西南大学;2015年
4 赵静;电场控制下的胶体自组装[D];苏州大学;2015年
5 郭凯;分子动力学模拟二肽自组装和驱油过程[D];山东大学;2015年
6 申学礼;烷氧基苯分子表面自组装的STM研究[D];苏州大学;2015年
7 谭朋利;应用分子力学/动力学研究有机分子/蛋白分子的反应机理[D];苏州大学;2015年
8 凌杰;金属配位键调控的4’-(4-羧基苯基)-2,2’:6’,2”-三联吡啶分子自组装结构研究[D];南昌大学;2015年
9 郭燕;生物大分子自组装结构的原子力显微镜研究[D];江西师范大学;2015年
10 杨阳;离子液体催化Biginelli反应和表面活性剂/β-CD自组装的调控[D];新疆大学;2015年
,本文编号:2488563
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2488563.html