工件的加工和配送协作排序问题
本文关键词:工件的加工和配送协作排序问题,,由笔耕文化传播整理发布。
【摘要】:排序论是组合最优化领域的一个重要研究方向.它有着广泛的应用背景和深刻的理论意义,常常应用于军事、经济、运输、管理和计算机科学等诸多领域.工件的加工和配送协作排序问题起源于大型工业车床加工领域,在物流和供应链管理领域都有着重要的实际背景,研究成果也非常丰富.分批排序、工件加工时间具有学习效应、工件属于一些不相容的组(famly)及工件的配送过程外包的排序问题都是比较新型的模型,也吸引了众多国内外学者的关注.本文对这几类排序问题进行了讨论,做了如下工作.1.第一章介绍排序问题的一些基本概念、符号和相关知识.2.第二章讨论了工件的运输和继列分批加工协作排序问题.目标分别是极小化工件的总完工时间与批的费用之和及极小化工件的最大完工时间与批的加工费用之和.在工件的加工时间都相等的情况下,如果车辆运输工件的次序确定,分别给出了多项式时间的动态规划算法;如果车辆运输工件的次序不确定,证明了该问题是NP-困难的,分别给出了车辆返回时间t=0时最差性能比等于2-1/m的近似算法.3.第三章讨论了带有多个工件组的平行批处理机排序问题,其中,共有F个不相容的组,且每一组中的工件都具有相同的加工时间和相同的权.目标为极小化带权误工工件数.当组的个数F为固定常数时,给出了运行时间为O(bF1-2Fn2FW)的伪多项式时间算法,得到了运行时间为O(bF1-2Fn2F+2ε)的完全多项式时间近似方案(FPTAS),其中,参数b为批的容量.如果每一组中工件的交货期也相同,给出了运行时间为O(n(log n+W min{P,dmax}))的伪多项式时间算法,其中,参数P,W分别表示工件的总完工时间和总权,dmax为工件的最大交货期.4.第四章讨论了工件具有学习效应的加工和配送协作排序问题.机器随着加工工件的增多,相应地具有一定的学习功能,机器上第r个位置上工件j的实际加工时间满足pj[r]=pj(1+Σ(r-1)(l=1)lnp[l])α,其中,p[l]为排序中第l个位置上工件的正常加工时间,α≤0为学习因子.对目标分别为极小化工件的总配送时间与批的费用之和及极小化工件的最大延迟时间与批的费用之和的排序问题,给出了运行时间为O(n4)和O(n5)的动态规划算法.5.第五章讨论了配送外包的工件加工和批送货的排序问题,中间环节工件的配送由第三方物流公司负责,工件要在上一阶段加工完成T时间内分批送达下一阶段.工件的配送有正常、快递和即送三种模式,目标为极小化配送批的总费用.在制造商安排生产加工过程的情形中,如果只有正常或者快递一种配送模式,给出了运行时间为O(nL)的多项式时间算法,其中,参数L为正常或者快递配送模式车辆发车时间的个数.如果有正常和快递两种配送模式,当快递模式的车辆个数无限时,给出了运行时间为O(n3L1L2V1c2(L1V1+L2c2))的多项式时间算法;当快递模式的车辆个数有限时,给出了运行时间为O(n3L1L2V1V2c2(L1V1+ L2V2))的多项式时间算法.如果有三种配送模式,当即送模式的车辆个数无限时,给出了运行时间为O(n4L1L2V1V2c3(L1V1+L2V2+c3))的多项式时间算法;当即送模式的车辆个数有限时,给出了运行时间为O(n2V3+4L1V2V1V2c3(L1V1+ L2V2)+n2V3+6L1L2V1V2c23)的多项式时间算法,其中,参数L1、L2表示正常和快递模式下车辆发车时间的个数,Vi、ci(i=1,2,3)表示正常、快递和即送模式下可用的车辆数及相应的容量.在第三方物流公司安排生产加工过程的情形中,证明了该问题是强NP—困难的.
【关键词】:协作排序 配送 NP-困难 动态规划算法 近似算法 最差性能比 完全多项式时间近似方案
【学位授予单位】:曲阜师范大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O223
【目录】:
- 中文摘要3-5
- 英文摘要5-11
- 第一章 绪论11-22
- §1.1 排序论的背景11-12
- §1.2 模型与符号12-17
- §1.3 计算复杂性17-18
- §1.4 NP理论18-19
- §1.5 算法与与性能19-22
- 第二章 工件的运输和继列分批加工协作排序问题22-37
- §2.1 引言22-23
- §2.2 符号与预备知识23-24
- §2.3 极小化工件的总完工时间与批的加工费用之和模型24-31
- §2.3.1 车辆运输工件的次序确定的情形24-26
- §2.3.2 车辆运输工件的次序不确定的情形26-31
- §2.4 极小化工件的最大完工时间与批的加工费用之和模型31-36
- §2.4.1 车辆运输工件的次序确定的情形31-33
- §2.4.2 车辆运输工件的次序不确定的情形33-36
- §2.5 结论36-37
- 第三章 工件分类的平行批处理机排序问题37-47
- §3.1 引言37-39
- §3.2 问题描述与符号39
- §3.3 一般情形39-44
- §3.3.1 伪多项式时间算法40-42
- §3.3.2 上界与下界42-43
- §3.3.3 完全多项式时间近似方案(FPTAS)43-44
- §3.4 特殊情形44-45
- §3.5 结论45-47
- 第四章 工件具有学习效应的加工和分批配送协作排序问题47-55
- §4.1 引言47-48
- §4.2 问题描述与符号48-49
- §4.3 极小化工件的总配送时间与批的费用之和49-52
- §4.4 极小化工件的最大延误与批的费用之和52-54
- §4.5 结论54-55
- 第五章 配送外包的工件加工和批送货的排序问题55-79
- §5.1 引言55-57
- §5.2 问题描述与符号57-61
- §5.3 制造商安排生产加工过程61-74
- §5.3.1 正常或者快递一种配送模式的情形61-63
- §5.3.2 正常和快递两种配送模式的情形63-68
- §5.3.2.1 快递模式的车辆个数无限63-66
- §5.3.2.2 快递模式的车辆个数有限66-68
- §5.3.3 三种配送模式的情形68-74
- §5.3.3.1 即送模式的车辆个数无限68-71
- §5.3.3.2 即送模式的车辆个数有限71-74
- §5.4 第三方物流公司安排生产加工过程74-78
- §5.5 结论78-79
- 参考文献79-88
- 攻读博士期间发表的论文88-89
- 致谢89
【相似文献】
中国期刊全文数据库 前10条
1 姜振多;孙世杰;吴志刚;;排序问题的稳定性分析(英文)[J];Journal of Shanghai University(English Edition);2008年01期
2 谭素平;;排序问题的分类与特点[J];科技信息;2012年36期
3 越民义,韩继业;排序问题中的一些数学问题[J];数学的实践与认识;1976年03期
4 越民义,韩继业;同顺序m×n排序问题的一个新方法[J];科学通报;1979年18期
5 吴家强;用分段选优法求解“排序问题”[J];武汉水利电力学院学报;1979年03期
6 戴志勇;;一类排序问题最优工序定义的等价性[J];武汉钢铁学院学报;1979年02期
7 韩继业;排序问题的一个判别条件和一类特殊的m×n排序问题[J];应用数学学报;1980年04期
8 吴在德;梁学信;;排序问题计算加工时间的一种方法及其一个应用[J];华侨大学学报;1981年01期
9 叶懋冬;;关于过竿问题与多台机床上零件加工的排序问题(Ⅰ)[J];浙江大学学报;1982年04期
10 徐本顺;有提前和延误损失的一类排序问题[J];华中工学院学报;1983年04期
中国重要会议论文全文数据库 前10条
1 柏孟卓;唐国春;;加工时间可控的同时加工排序问题[A];2006年中国运筹学会数学规划分会代表会议暨第六届学术会议论文集[C];2006年
2 张莲珠;;关于六角链的极值和排序问题的一些结果[A];中国运筹学会第六届学术交流会论文集(上卷)[C];2000年
3 周支立;李怀祖;;有重叠区域的两抓钩周期性排序问题的求解[A];Systems Engineering, Systems Science and Complexity Research--Proceeding of 11th Annual Conference of Systems Engineering Society of China[C];2000年
4 孙世杰;陈跃;;参数可控的排序问题[A];2001年全国数学规划及运筹研讨会论文集[C];2001年
5 张玉忠;;分批排序问题研究[A];中国运筹学会第七届学术交流会论文集(上卷)[C];2004年
6 张玉忠;;分批排序问题研究[A];中国运筹学会第七届学术交流会论文集(中卷)[C];2004年
7 谭万达;;二元对比排序中的最少逆序原理[A];中国系统工程学会模糊数学与模糊系统委员会第五届年会论文选集[C];1990年
8 吕绪华;杨汉兴;;求解装配式排序问题的归并算法及其性能比研究[A];中国运筹学会第六届学术交流会论文集(下卷)[C];2000年
9 樊保强;;带仓储约束的准时排序问题[A];中国运筹学会第九届学术交流会论文集[C];2008年
10 陈荣军;唐国春;;自由作业环境下的供应链排序问题[A];中国运筹学会第九届学术交流会论文集[C];2008年
中国博士学位论文全文数据库 前10条
1 高强;一些现代排序问题的算法设计与分析[D];华东理工大学;2015年
2 谷存昌;工件的加工和配送协作排序问题[D];曲阜师范大学;2015年
3 仲维亚;供应链管理中的若干排序问题研究[D];浙江大学;2008年
4 尹晓;基因组重组排序问题的算法研究[D];山东大学;2010年
5 余炜;若干网络排序问题的算法和复杂性研究[D];华东理工大学;2010年
6 张安;带服务等级的在线排序问题及相关问题研究[D];浙江大学;2009年
7 郑睿;钢铁生产中的批处理机作业排序问题算法研究[D];复旦大学;2009年
8 季敏;当代工业中的若干排序问题研究[D];浙江大学;2006年
9 李好好;若干排序问题研究[D];浙江大学;2014年
10 丁国生;多代理竞争排序问题的研究[D];上海大学;2009年
中国硕士学位论文全文数据库 前10条
1 李韦萱;两类带有维修的排序问题[D];沈阳师范大学;2015年
2 周雨波;与工件释放时间和交货时间有关的排序问题及近似算法[D];兰州大学;2015年
3 张龙;优化交货期窗口的单机供应链排序问题[D];曲阜师范大学;2015年
4 于萌萌;工件带有恶化效应的博弈排序问题[D];曲阜师范大学;2015年
5 李雨洁;恒速机下的有限资源博弈排序最优性研究[D];曲阜师范大学;2015年
6 尚明明;带有GDD假设的几类重新排序问题研究[D];郑州大学;2015年
7 黄保斌;分批的供应、加工、配送供应链排序问题[D];曲阜师范大学;2015年
8 胡爱丽;几个不同参数可控的排序问题的讨论[D];苏州大学;2009年
9 孙叶平;误工排序问题[D];重庆师范大学;2008年
10 董柳毅;与误工有关的多目标排序问题[D];重庆师范大学;2009年
本文关键词:工件的加工和配送协作排序问题,由笔耕文化传播整理发布。
本文编号:346256
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/346256.html