Orlicz Brunn-Minkowski理论中的仿射极值问题

发布时间:2017-05-10 08:13

  本文关键词:Orlicz Brunn-Minkowski理论中的仿射极值问题,由笔耕文化传播整理发布。


【摘要】:本学位论文属于Orlicz Brunn-Minkowski理论,致力于仿射极值问题和等周型不等式的研究,涉及John椭球体、极小表面积、均质积分和仿射均质积分.第二章通过解决Orlicz混合体积的一类仿射极值问题,引入了凸体的Orlicz-John椭球体这一类关联椭球体,并证明了Orlicz-John椭球体的连续性和公共极限位置定理,这表明Orlicz-John椭球体将经典John椭球体及其发展成的Lp John椭球体推广到Orlicz Brunn-Minkowski理论框架下.建立起了Orlicz-John椭球体的表征与测度迷向性的本性联系.研究了Orlicz-John椭球体的体积的界以及体积比,特别地,建立了Orlicz-John椭球体的体积比不等式,该仿射不等式推广了Ball建立的体积比不等式以及Lutwa、Yang、和Zhang建立的Lp版本.第三章通过解决Orlicz表面积的极小化问题,引入了凸体的极小Orlicz表面积这一仿射几何量,它推广了Petty的极小表面积以及LYZ的极小Lp-表面积.通过研究极小Orlicz表面积泛函在等体积凸体类上的界,建立了极小Orlicz表面积的等周不等式和逆等周不等式.特别地,极小Orlicz表面积的逆等周不等式将Ball建立的极小表面积的逆等周不等式和LYZ本性建立的极小Lp-表面积的逆等周不等式推广到Orlicz Brunn-Minkowski理论框架下.第四章通过研究均质积分的一阶Orlicz变分,引入了凸体的Orlicz混合均质积分这一类几何量,它们推广了Aleksandrov、Fenchel和Jessen引入的混合均质积分和Lutwak引入的Lp-混合均质积分.建立了Orlicz混合均质积分的Cauchy-Kubota公式,这将Orlicz Brunn-Minkowski理论与积分几何联系了起来.建立了Orlicz混合均质积分的Minkowski等周不等式,并进一步建立了均质积分的Orlicz Brunn-Minkowski不等式.第五章通过研究仿射均质积分的一阶Orlicz变分,引入了凸体的Orlicz混合仿射均质积分这一类几何量.利用Grassman n流形上的积分几何技术,完整地证明了Orlicz混合仿射均质积分的仿射不变性.建立了Orlicz混合仿射均质积分的Minkowski等周不等式,并进一步建立了仿射均质积分的Orlicz Brunn-Minkowski不等式.
【关键词】:Orlicz Brunn-Minkowski理论 John椭球体 L_p John椭球体 迷向性 体积比 极小表面积 逆等周不等式 均质积分 仿射均质积分 积分几何 Minkowski等周不等式 Brunn-Minkowski不等式
【学位授予单位】:上海大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O186.5
【目录】:
  • 摘要6-7
  • ABSTRACT7-11
  • 第一章 绪论11-33
  • 1.1 理论背景11-14
  • 1.2 问题的来源与提出14-20
  • 1.2.1 Orlicz-John椭球体和极小 Orlicz表面积14-17
  • 1.2.2 Orlicz混合均质积分17-19
  • 1.2.3 Orlicz混合仿射均质积分19-20
  • 1.3 研究成果及简述20-28
  • 1.3.1 Orlicz-John椭球体21-24
  • 1.3.2 极小Orlicz表面积24-25
  • 1.3.3 Orlicz混合均质积分25-27
  • 1.3.4 Orlicz混合仿射均质积分27-28
  • 1.4 论文结构安排28
  • 1.5 预备知识28-33
  • 1.5.1 常见术语和记号28-29
  • 1.5.2 凸体与混合体积理论的基本知识29-31
  • 1.5.3 Orlicz范数31-33
  • 第二章 Orlicz-John椭球体33-65
  • 2.1 引言33-35
  • 2.2 Orlicz混合体积35-42
  • 2.2.1 Orlicz混合体积35-38
  • 2.2.2 Orlicz混合体积的连续性38-42
  • 2.3 Orlicz-John椭球体42-47
  • 2.4 Orlicz-John椭球体的连续性47-50
  • 2.5 公共极限位置定理50-54
  • 2.6 Orlicz-John椭球体的表征54-59
  • 2.7 体积比不等式59-65
  • 第三章 极小Orlicz表面积65-81
  • 3.1 引言65-67
  • 3.2 Orlicz表面积67-68
  • 3.3 凸体的极小Orlicz表面积68-71
  • 3.4 极小Orlicz表面积的表征71-75
  • 3.5 极小Orlicz表面积的界75-81
  • 第四章 Orlicz混合均质积分81-101
  • 4.1 引言81-83
  • 4.2 预备知识83
  • 4.3 Orlicz混合均质积分83-87
  • 4.4 Orlicz混合均质积分及的Cauchy-Kubota公式87-92
  • 4.5 均质积分的Orlicz Brunn-Minkowski不等式92-98
  • 4.6 均质积分的多元Orlicz Brunn-Minkowski不等式98-101
  • 第五章 Orlicz混合仿射均质积分101-117
  • 5.1 引言101-102
  • 5.2 Orlicz混合仿射均质积分102-104
  • 5.3 Orlicz混合仿射均质积分的仿射不变性104-108
  • 5.4 仿射均质积分的Orlicz Brunn-Minkowski不等式108-114
  • 5.5 仿射均质积分的多元Orlicz Brunn-Minkowski不等式114-117
  • 第六章 总结与展望117-119
  • 参考文献119-131
  • 攻读博士学位期间发表及完成的论文131-133
  • 致谢133

  本文关键词:Orlicz Brunn-Minkowski理论中的仿射极值问题,,由笔耕文化传播整理发布。



本文编号:354354

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/354354.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9aac1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com