基于差异调控分析探究胃癌形成过程中转录因子和microRNA的异常调控机制
本文选题:胃癌 切入点:复合基因调控网络 出处:《华东理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:胃癌(GastricCancer,GC)是全世界范围内发病率和死亡率最高的癌症类型之一。尽管已经鉴定出很多与胃癌相关的基因(gene)和microRNA(miRNA),但它们在系统层面的作用机理仍然不清楚。为了在系统层面探究胃癌形成过程中的异常调控机制,本课题建立了用来识别癌症相关调控关系的方法,该方法创造性地整合了差异调控、差异表达及调控子(Regulator)对靶基因调控效应三方面的信息,并将该方法用于胃癌组学数据研究胃癌发生发展的机制。本课题基于TCGA胃癌mRNA和miRNA表达数据,首先用差异共表达分析(Differential Coexpression Analysis,DCEA)策略获得一组在正常和癌症状态之间表达水平的相关性发生显著变化的gene和miRNA(gene/miRNA),并用这些gene/miRNA分别构建正常和癌症条件下包含转录因子(Transcriptional Factor,TF)和miRNA的条件特异的复合基因调控网络(combinational Gene Regulatory Network,cGRN),发现条件特异的cGRN能显著富集已知的癌症相关的gene/miRNA;然后建立了度量不同条件下调控关系差异的方法,发现该方法能将癌症相关的gene/miRNA显著地排在前面,并用该方法筛选调控强度发生显著变化的调控关系;随后,通过整合差异调控、差异表达及Regulator对靶基因因的调控效应三方面的信息定义了差异调控关系(Differentially Regulated Link,DRL);最后,通过整合DRL及临床生存时间数据,筛选出三个关键的Regulator,TCF7L1、TCF4和MEIS1。围绕这三个Regulator,及其相关的DRL,结合文献信息,在系统水平上提出了一个胃癌发生的异常调控机制假说。在该项研究中,miRNA微调效应在系统层面被观察到。此外,本课题还将差异调控分析方法应用到中国人胃癌表达谱数据GSE54129中,对癌症和癌旁之间的差异调控基因(Differentially Regulated Genes,DRG)和差异调控关系(DRL)排序。从计算的结果中选取排在最靠前的一个TF CREB1,及两个靶基因TCEAL2和MBNL1,用分子生物学实验重现了预测的这两个调控关系在正常和癌症条件下的差异调控结果。本课题提出的胃癌机制假说能为今后的研究提供指导,构建的差异调控分析策略还可以用于探索其它复杂疾病以及表型变化现象背后的基因表达调控机制。
[Abstract]:Gastric cancer is one of the most common cancer types with the highest morbidity and mortality in the world. Although many genes related to gastric cancer gene genetics and microRNAs miRNAs have been identified, the mechanism of their action at the system level is still unclear. To explore the mechanism of abnormal regulation in the formation of gastric cancer, In this study, a method was developed to identify cancer-related regulatory relationships. This method creatively integrates information on differential regulation, differential expression and regulatory effects of regulators on target genes. The method was used to study the mechanism of gastric carcinogenesis and development in gastric cancer. This study was based on mRNA and miRNA expression data of TCGA gastric cancer. First, differential Coexpression Analysis (DCEA) strategy was used to obtain a group of gene and miRNAgene / miRNAs with significantly different expression levels between normal and cancer states, and these gene/miRNA were used to construct transcription factors under normal and cancer conditions, respectively. The combined Gene Regulatory Network (CGRN) and the conditional specific gene regulatory network of miRNA found that conditional cGRN significantly enriched known cancer-related gene / miRNAs, and then established a method to measure differences in regulatory relationships under different conditions. It was found that this method can significantly rank the cancer related gene/miRNA in the first place, and screen out the regulatory relationships with significant changes in regulatory intensity by using this method, and then, by integrating differential regulation, Differential expression and the regulatory effect of Regulator on target gene cause define differential Regulated link DRL. Finally, by integrating DRL and clinical survival time data, Three key Regulators, TCF7L1, TCF4 and MEIS1, were screened around the three Regulators, and their associated DRLs, combined with literature information, A hypothesis of abnormal regulatory mechanism for gastric carcinogenesis has been proposed at the systemic level. In this study, the effect of miRNA fine-tuning was observed at the systemic level. The method of differential regulation analysis was also applied to Chinese gastric cancer expression profile data GSE54129. The differential Regulated genes (DRGs) and differential regulatory relationships (DRLs) were sequenced between cancer and adjacent cancer. The TF CREB1, two target genes TCEAL2 and MBNL1 were selected from the calculated results, and predicted by molecular biological experiments. The results of these two regulatory relationships are different in normal and cancer conditions. The hypothesis of gastric cancer mechanism proposed in this paper can provide guidance for future research. The strategy can also be used to explore the gene expression regulation mechanism behind other complex diseases and phenotypic changes.
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R735.2
【共引文献】
相关期刊论文 前10条
1 宫秀芬;;提升辽宁省物流增值服务水平策略[J];党政干部学刊;2017年07期
2 李斐;;基于供应链的企业物流整合策略研究[J];中小企业管理与科技(下旬刊);2017年05期
3 曹晔;;构建草原丝绸之路经济带框架下内蒙古物流企业提升增值服务策略研究[J];物流科技;2017年03期
4 李玉凤;邢淋淋;;智慧供应链绩效评价指标体系构建[J];统计与决策;2017年03期
5 孔祥统;;基于供应链整合的两烟物流一体化模式研究[J];科技和产业;2016年12期
6 寇光涛;卢凤君;王文海;;新常态下农业产业链整合的路径模式与共生机制[J];现代经济探讨;2016年09期
7 刘怡君;;典型有色金属企业供应链整合驱动机制研究[J];生态经济;2016年07期
8 杨利军;;基于供应链协同的物流增值服务研究[J];商业经济研究;2016年10期
9 杨茂盛;王阳;;制造企业内部供应链管理的优化[J];物流技术;2015年19期
10 文风;成龙;冯华;;供应链社会资本对供应链整合影响的实证研究[J];科技进步与对策;2015年22期
相关硕士学位论文 前10条
1 石芳菲;第三方物流公司的供应链整合研究[D];华东理工大学;2017年
2 杨莉;南方航空贵州公司物流业务模式研究[D];贵州大学;2016年
3 周杨;云南NG工业园区企业供应链整合影响因素及方案研究[D];昆明理工大学;2016年
4 刘洪刚;基于供应链整合的CY物流公司业务重组项目研究[D];吉林大学;2013年
5 雷鸣;第三方物流企业个性化服务质量评价研究[D];浙江理工大学;2013年
6 李金蓉;重庆保税港区第三方物流运作模式研究[D];重庆理工大学;2013年
7 张博;H公司手机物流项目风险管理研究[D];吉林大学;2013年
8 袁树威;MG物流公司保税物流业务模式构建研究[D];华南理工大学;2012年
9 何一帆;重组型企业整合阶段的薪酬模式研究[D];吉林大学;2012年
10 孟丹丹;第三方物流资源整合能力评价与供应链管理运作模式选择研究[D];天津财经大学;2012年
,本文编号:1616351
本文链接:https://www.wllwen.com/shoufeilunwen/mpalunwen/1616351.html