当前位置:主页 > 硕博论文 > 医学硕士论文 >

以FtsZ为靶点的5-甲基菲啶类衍生物的设计、合成和抗菌活性研究

发布时间:2018-07-25 10:32
【摘要】:细菌感染严重威胁着人类健康,随着世界范围内细菌耐药性的出现和蔓延,这种威胁越发严重。因此,具有新颖作用机制及作用靶点的抗菌药物应加快开发,从而有效地控制多药耐药菌的产生和传播。FtsZ是一类高度保守的参与细菌细胞分裂的关键蛋白,已作为新型抗菌靶点受到广泛关注。苯菲啶是血根碱和白屈菜赤碱结构的一个截断形式,许多苯菲啶衍生物被合成。这些被合成的苯菲啶衍生物发挥了较好的抗菌活性,是FtsZ抑制剂。因此,对苯菲啶结构进一步简化和优化,则有可能开发出更为有效的FtsZ抑制剂。通过计算机辅助药物设计软件(symbol 2.0)对苯菲啶结构进行简化和对接研究,发现5-甲基菲啶结构中的季铵盐结构可以结合到FtsZ的GTP结合口袋的尾部,而芳环结构则与Gly46、Gly47和Ala48等氨基酸残基通过疏水作用相结合,从而发挥抑制FtsZ的作用。因此,5-甲基菲啶被选定为先导结构用于结构修饰,合成了 3个系列共22个5-甲基菲啶衍生物,并以血根碱、姜黄素、环丙沙星和苯唑西林钠为阳性对照药,测定了所有合成化合物的抗菌活性和靶向活性,总结如下:(1)5-甲基菲啶类衍生物对枯草芽孢杆菌、耐青霉素金黄色葡萄球菌、敏感化脓性链球菌、耐药化脓性链球菌均表现出了较好的活性,有些甚至比先导化合物血根碱活性要高。对敏感性金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和表皮葡萄球菌抗菌活性均较差。对大肠杆菌和铜绿假单胞菌基本不显示出抗菌活性。此外,化合物的抗菌活性与靶向活性基本一致。(2)化合物 5A5、5A6、5A8、5B1、5B3、5B6、5C1 和 5C2 对枯草芽孢杆菌的活性最强(MIC = 4 μg/mL),是血根碱、环丙沙星和苯唑西林钠的2倍;5A4、5A7、5A11、5B2、5B4、5B7、5C3和5C4对枯草芽孢杆菌的活性较强(MIC =8μg/mL),与血根碱、环丙沙星和苯唑西林钠相同。(3)化合物5A5、5A6、5B1、5B6、5C1和5C2对耐青霉素金黄色葡萄球菌的活性与先导化合物血根碱相同(MIC = 4μg/mL);化合物5B3对敏感性金黄色葡萄球菌有较好的抗菌活性(MIC = 8 μg/mL)与血根碱和苯唑西林钠相同,化合物5B7对耐甲氧西林金黄色葡萄球菌也显示出一定的抗菌活性(MIC = 16μg/mL);5C1和5C2对耐甲氧西林金黄色葡萄球菌显示出抗菌活性(MIC = 32μg/mL)。(4)大部分目标化合物对于敏感化脓性链球菌和耐药化脓性链球菌的活性相差不多,与先导化合物血根碱相同或有小幅提高。基于上述研究结果,5-甲基菲啶类衍生物的初步构效关系归纳如下:(1)在5-甲基菲啶的2位引入烷基,抗菌活性和靶向活性普遍增强,并且直链烷基的活性好于支链烷基;引入甲氧基和甲硫基保留抗菌活性和靶向活性;引入含卤素基团则降低抗菌活性和靶向活性均下降。(2)在在5-甲基菲啶的4位引入烷基、三氟甲氧基、甲氧基和甲硫基保留或略微增强抗菌活性和靶向活性;引入三氟甲基则活性下降。(3)2位、4位联合修饰的化合物,抗菌活性并没有进一步增强,但是靶向活性略有增强。本论文以FtsZ为靶点,对血根碱和白屈菜赤碱等天然FtsZ抑制剂的结构进行简化和优化,选定5-甲基菲啶作为先导结构进行修饰,设计、合成了 3个系列的5-甲基菲啶衍生物,测定了它们对9种细菌的抗菌活性及靶向活性,对其构效关系进行了初步分析,认为5-甲基菲啶衍生物可作为先导化合物进一步优化,以便发现新型FtsZ抑制剂。因此,本论文的研究结果为新型FtsZ抑制剂的设计、合成提供了新思路和新方法。
[Abstract]:Bacterial infection is a serious threat to human health. With the emergence and spread of bacterial resistance in the world, the threat is more serious. Therefore, antimicrobial agents with novel mechanisms and targets should be developed quickly to effectively control the production and transmission of multidrug resistant bacteria, which are highly conservatively involved in bacterial cells. The key protein of the Division has been widely concerned as a new type of antibacterial target. Phenanthridine is a truncated form of the structure of root alkali and corioferine, and many phenanthridine derivatives have been synthesized. These synthesized phenanthridine derivatives play a good antibacterial activity and are FtsZ suppressant. Therefore, the structure of phenanthridine is further simplified and superior. It is possible to develop a more effective FtsZ inhibitor. The structure of phenanthridine is simplified and butted through computer aided drug design software (symbol 2). It is found that the quaternary ammonium salt structure in the 5- methyl phenanthridine structure can be combined with the tail of the GTP binding pocket of FtsZ, while the aromatic ring structure is with the amino acids such as Gly46, Gly47 and Ala48. The residues are combined by hydrophobicity to inhibit FtsZ. Therefore, 5- methyl phenanthridine is selected as a pilot structure for structural modification, and 3 series of 22 5- methyl phenanthridine derivatives are synthesized, and the antibacterial activities of all synthetic compounds are determined with schien base, curcumin, ciprofloxacin and zoxicillin sodium as the positive control drugs. The properties and target activity were summarized as follows: (1) 5- methyl phenanthridine derivatives showed good activity to Bacillus subtilis, penicillin resistant Staphylococcus aureus, sensitive pyogenic Streptococcus, and drug-resistant Streptococcus pyogenes, some even higher than that of pilot compounds. The antibacterial activity of Staphylococcus aureus and Staphylococcus epidermidis was poor. The antibacterial activity of Escherichia coli and Pseudomonas aeruginosa showed no antibacterial activity. In addition, the antibacterial activity of the compound was basically consistent with the target activity. (2) compound 5A5,5A6,5A8,5B1,5B3,5B6,5C1 and 5C2 had the strongest activity to Bacillus subtilis (MIC = 4 g/mL), which was blood. 2 times the root base, ciprofloxacin and zoxicillin sodium, 5A4,5A7,5A11,5B2,5B4,5B7,5C3 and 5C4 were more active (MIC =8 g/mL) to Bacillus subtilis (MIC =8 mu), which were the same as that of root alkali, ciprofloxacin and oxacillin sodium. (3) the activity of compound 5A5,5A6,5B1,5B6,5C1 and 5C2 to penicillin resistant Staphylococcus aureus was the same as that of the pilot compound (MIC). = 4 mu g/mL); compound 5B3 has better antibacterial activity against Staphylococcus aureus (MIC = 8 g/mL), which is the same as that of root alkali and oxacillin sodium. Compound 5B7 also shows a certain antibacterial activity against methicillin resistant Staphylococcus aureus (MIC = 16 mu g/mL); 5C1 and 5C2 show antibacterial activity against methicillin resistant Staphylococcus aureus. Activity (MIC = 32 mu g/mL). (4) most of the target compounds have little difference between the activity of Streptococcus pyogenes and drug resistant Streptococcus, and the same or small increase with the pilot compound. Based on the results, the preliminary structure-activity relationship of the 5- methyl phenanthridine derivatives is summarized as follows: (1) the introduction of the 2 bits of 5- methylphenanthrene. Alkyl, antibacterial activity and target activity are generally enhanced, and the activity of the alkyl alkyl is better than the chain alkyl; the antibacterial activity and the targeting activity are retained by the introduction of methoxy and methionyl groups, and the introduction of halogen groups reduces the antibacterial activity and the target activity. (2) the introduction of alkyl, three fluoromethoxy, methoxy and methyl sulphur in the 4 position of 5- methyl phenanthrene. The base retained or slightly enhanced the antibacterial activity and the targeting activity; the activity of the introduction of three fluoromethyl decreased. (3) 2, 4 co modified compounds, the antibacterial activity was not further enhanced, but the target activity was slightly enhanced. In this paper, the structure of natural FtsZ inhibitors, such as root alkali and coriobine, was simplified and optimized by FtsZ. 5- methyl phenanthridine was selected as the precursor structure to modify, design and synthesize 3 series of 5- methyl phenanthridine derivatives. The antibacterial activity and target activity of them to 9 bacteria were measured. The structure effect relationship was preliminarily analyzed. It was considered that 5- methyl phenanthridine derivative could be further optimized as a pilot compound to discover new FtsZ inhibition. Therefore, the research results in this paper provide new ideas and new methods for the design and synthesis of new FtsZ inhibitors.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R914;R96

【相似文献】

相关期刊论文 前10条

1 闫东辉;;哪些抗菌药物的抗菌活性容易下降,如何保存?[J];中华检验医学杂志;2006年01期

2 何小燕;李逐波;;羟基修饰与药物抗菌活性研究进展[J];中国兽药杂志;2006年06期

3 叶奰年;;含片的抗菌活性[J];中国药学杂志;1980年02期

4 蒋造华;;高氯酰氯霉素的合成和抗菌活性[J];国外医药.合成药.生化药.制剂分册;1984年06期

5 Richards.D.M. ,段民江;氨噻三嗪头孢菌素:抗菌活性、药理及应用[J];国外药学(抗生素分册);1985年02期

6 鲁慧萍;;人静脉注射免疫球蛋白体内外抗菌活性的研究[J];国外医学.输血及血液学分册;1985年02期

7 ΓорщевиковаЭВ;于守汛;;用增强抗菌药物抗菌活性的方法治疗化脓性疾病[J];国外药学(抗生素分册);1986年02期

8 刘湘;;一种蓝花楹属植物的植化和抗菌活性的研究[J];国外医药(植物药分册);1992年03期

9 陈明伟,李忠民,雒文田;盐酸左氧氟沙星注射液临床抗菌活性测定[J];中国临床药理学与治疗学杂志;1999年03期

10 周远大,何海霞,雷自强,杨苏,程革利;创愈酊体内抗菌活性研[J];重庆医科大学学报;1999年02期

相关会议论文 前10条

1 肖国强;殷霞;胡志鹏;尹晓刚;陈春霞;鄢明;;3-硝基-2H-色烯的合成和抗菌活性研究[A];2011年全国药物化学学术会议——药物的源头创新论文摘要集[C];2011年

2 金方;牟丽丽;王颜颜;刘涛华;吕倩;陈玉如;康颖倩;;贵州省土壤中需氧放线菌的分离鉴定及其抗菌活性的测定[A];中国菌物学会第六届会员代表大会(2014年学术年会)暨贵州省食用菌产业发展高峰论坛会议摘要[C];2014年

3 关恺珍;张万金;彭晓青;;9-位引入亲脂性芳基对小檗碱抗菌活性的影响[A];共铸医药学术新文明——2012年广东省药师周大会论文集[C];2012年

4 钦传光;张瑞洁;牛卫宁;徐春兰;尚晓娅;任锦;;脂肪酰阳离子肽的设计合成及其抗菌活性研究[A];第六届全国化学生物学学术会议论文摘要集[C];2009年

5 周伟良;余爱珍;;左氧氟沙星体内、外抗菌活性[A];中国药理学会第九届制药工业药理学术会议论文摘要汇编[C];2000年

6 于克贵;李东红;周成合;刁俊林;;新型阳离子卟啉的合成及抗菌活性研究[A];中国化学会第26届学术年会化学生物分会场论文集[C];2008年

7 朱一倩;陈红燕;张涛;陈秀琴;姜凤超;;3-取代阿齐霉素衍生物的合成及抗菌活性研究[A];2008年中国药学会学术年会暨第八届中国药师周论文集[C];2008年

8 卢卫红;朱峰;刘汉基;;朱红栓菌活性物质的提取及其抗菌活性研究[A];全国动物生理生化第十二次学术交流会论文摘要汇编[C];2012年

9 钟瑞敏;肖仔君;刘健南;罗亦姬;;二种可食用精油的抗菌活性初步研究[A];2010年中国农业工程学会农产品加工及贮藏工程分会学术年会暨华南地区农产品加工产学研研讨会论文摘要集[C];2010年

10 惠丽伟;朴寄纲;Jeffrey Auletta;胡圢;朱彦武;Tara Meyer;刘海涛;阳丽华;;氧化石墨烯的表面可吸附性决定其抗菌活性和细胞毒性[A];中国化学会第29届学术年会摘要集——第16分会:π-共轭材料[C];2014年

相关重要报纸文章 前3条

1 商报记者 杨帆;最奢侈蜂蜜的“数字化”创意[N];北京商报;2009年

2 傅德明;为耐药菌度身定做[N];医药经济报;2001年

3 张继戎;四种沙星治尿道炎[N];医药养生保健报;2006年

相关博士学位论文 前10条

1 谢俊秋;抗菌肽CPF-C1及其类似物对临床耐药细菌的抗菌活性和机制研究[D];兰州大学;2015年

2 张占涛;红霉素类衍生物的设计、合成与抗菌活性研究[D];沈阳药科大学;2005年

3 黄勋;无机抗菌复合材料的制备、抗菌活性及其抗菌机理研究[D];中南大学;2007年

4 周义文;家蝇抗菌肽分离纯化抗菌活性及分子结构研究[D];重庆医科大学;2004年

5 韩红娜;青霉烯类抗生素法罗培南与酯型新化合物的合成及抗菌活性研究[D];中国协和医科大学;2001年

6 路福平;无抗菌活性放线菌的激活和抗生素筛选新方法的研究[D];华南理工大学;1996年

7 刘开湘;7-[(1S,,4S)-3,3-二甲基-2-氧杂-5-氮杂二环[2.2.1]庚烷基]-喹诺酮及其类似物的合成及抗菌活性的研究[D];中国协和医科大学;2002年

8 杨华蓉;人抗菌多肽的分离纯化、鉴定、cDNA克隆、基因重组及其结构与功能研究[D];四川大学;2003年

9 董国霞;以PDF为靶点的新药筛选及活性组分的分离纯化、结构鉴定与活性研究[D];中国协和医科大学;2009年

10 Amadou Issoufou;发酵小米多肽的抗氧化与抗菌活性的研究[D];江南大学;2014年

相关硕士学位论文 前10条

1 段正巧;Pseudozyma aphidis CNm2012代谢产物甘露糖赤藓糖醇脂(MELs)的抗菌活性检测[D];西南大学;2015年

2 张美玲;茵陈提取物及其有效成分的抗菌活性研究[D];延边大学;2015年

3 金明君;含苄氧基及亚苄基结构氨基胍衍生物的合成及抗菌活性的研究[D];延边大学;2015年

4 李超;5-芳基-1,2,4-三唑-3-硫酮罗丹宁及氨基胍、3-氨基-1,2,4-三唑衍生物的合成及抗菌活性研究[D];延边大学;2015年

5 赵晓蔚;一组α螺旋抗菌肽的预测与活性测定[D];复旦大学;2013年

6 金方;贵州地区需氧放线菌的分离鉴定及抗菌活性的研究[D];贵阳医学院;2015年

7 颜莉莉;含氟吡唑环VA唑烷酮类化合物的合成及其抗菌活性研究[D];上海应用技术学院;2015年

8 郭珍珍;11-O-(2-(芳烷基酰胺基)乙基)氨基甲酰克拉霉素衍生物的设计、合成与抗菌活性研究[D];山东大学;2015年

9 王仪;以FtsZ为靶点的4-溴-1H-吲唑衍生物的设计、合成与抗菌活性研究[D];山东大学;2015年

10 张颖裕;人工培育的长座线虫草抗菌活性研究及其化学成分分析[D];安徽农业大学;2014年



本文编号:2143552

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/mpalunwen/2143552.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ec9a6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com