当前位置:主页 > 硕博论文 > 农业博士论文 >

番茄光合的光谱效应研究

发布时间:2017-12-27 11:48

  本文关键词:番茄光合的光谱效应研究 出处:《河北农业大学》2015年博士论文 论文类型:学位论文


  更多相关文章: 番茄 光质 叶片内部光分布 光合特性 叶绿素荧光 果实


【摘要】:设施栽培已成为保障蔬菜周年均衡供应的一种现代农业方式,然而由于光照不足引起光合能力下降而成为限制设施蔬菜高产稳产的重要因素。因此,深入分析提高光能利用效率的调控措施及相关机制,是光合作用研究的基本内容和重要方向,也是挖掘蔬菜作物单叶或群体光合生产力的关键。本研究以番茄(Lycopersicon esculentum Mill.)为试材,针对叶绿素光吸收与叶片光吸收差异、叶绿素吸收非峰值光谱的叶片内部光能利用特征、以及以往红蓝处理光源的光强偏弱造成光合产物匮乏而对作物生长发育的光质信息调控效应难以充分体现的问题,以光谱能量驱动效应和信号调控效应为切入点,测试分析不同光质下叶片内部光吸收的光谱效应、光系统光能捕获吸收与传递转化分配状况、以及与其相偶联的光合酶动力学特性,探明叶片内部微观光截获特征,同时,结合光合色素含量、解剖结构、相关光合酶基因表达、碳代谢产物的光谱效应分析,探索番茄叶片光合器官和光合机构的光质适应特性及调控机制。主要结果如下:1.研究了单色光质LED测试光源(光纤光谱仪的测定光源)下番茄叶片的光吸收,结合叶片结构的能流分配和kubelka-Munk理论(k-m模型)计算分析了叶片内部光分布。从叶片腹面照光(上表皮方向)79.08~88.18%的光合有效辐射PAR被番茄叶片吸收,其余部分被叶片反射(9.82~12.01%)和透射(0.79~5.08%)损失掉了,从背面照光(下表皮方向)获得的叶片吸收率较腹面照光减少了2.07~4.39%,其中以绿光520 nm降幅最大;从叶片内部看,栅栏组织对蓝光(445 nm、470 nm)的吸收最大(分别为86.32%和83.79%),红光(625 nm、660 nm)居中(分别为83.38%、82.13%),绿光(520 nm)最低(77.53%),而海绵组织对光的吸收却表现出相反的变化趋势即520 nm的最高(13.15%),红光其次(11.64%和13.06%),蓝光最低(6.99%和7.83%)。综合分析表明,叶片内部光质光量不仅在空间上分布有很大变化(栅栏组织吸收的光量远大于海绵组织),并呈现出光谱特征的不均一性(栅栏组织中富有红光和蓝光而海绵组织相对富有绿光)。2.研究了单色光质LED测试光源(Ciras-Ⅱ型便携式光合仪的测定光源)下自然光培养的番茄叶片光能传递转化分配状况。从叶绿素荧光动力学参数来看,随着光强的增加(200~1 500μmol·m-2·s-1,番茄叶片的光抑制发生以蓝光更为敏感,表现在其照射下番茄叶片PSII最大光化学量子产量Fv/Fm、PS II实际量子产量Y(II)、电子传递速率ETR和开放的PSⅡ反应中心的激发能捕获效率Fv'/Fm'下降程度比红光和绿光更为显著,而且引起这些参数明显下降时对应的光强较红光和绿光低。从光抑制的保护机制来看,红光和绿光以PSⅡ调节性能量耗散途径为主,而非调节性能量耗散途径对蓝光光抑制的保护能力更强。从光合光响应的光谱特征参数来看,蓝光(470 nm和445 nm)下番茄叶片Pn、LCE和AQY均低于红光(625 nm、660 nm)和绿光,与以往研究不同的是绿光下番茄叶片Pn较高,当PAR高于600μmol·m-2·s-1光强时520 nm处理下Pn仅次于红光625 nm;根据光合CO2响应曲线利用Farquhar生化模型拟合计算的番茄叶片Vcmax、Jmax和磷酸丙糖利用速率TPU均以660 nm为最大,其次为625 nm,而蓝光445 nm最低,反映了在饱和光强和28℃环境下番茄叶片对红光具有较高的光合能力、光合酶活性和生态适应性。3.研究了单色光质培养对番茄植株生长和叶片光合活性的影响。蓝光(445 nm、460 nm)培养下番茄植株茎粗、干物率、壮苗指数叶片栅栏组织厚度、栅海比(P/S)、组织紧实度CTR均高于绿光和红光,并且在蓝光460 nm处理下尤为明显,625 nm红光培养显著增加了植物地上部分的生物量,促进了茎的伸长,但降低了叶片的干重和鲜重;660 nm红光显著提高了番茄叶片叶绿素a、叶绿素b含量、叶绿素总含量和类胡萝卜素含量,但Chla/Chlb值最低;从叶片光吸收情况,460 nm蓝光处理下的番茄叶片吸光度在红光区和蓝光区两个主要活跃区域均为最大,其次为445 nm蓝光,红光居中,而绿光最小。从叶绿素荧光参数看,生长在不同光质下的番茄幼苗叶片Fv/Fm和Fv'/Fm'除660 nm红光显著低于对照外,其他处理间无显著性差异;Y(II)和ETR呈现出相同的变化趋势,均在625 nm红光处理下显著高于对照,分别比对照多出7.03%和10.09%,番茄叶片的NPQ值以660 nm红光最大,其次为460 nm蓝光,绿光最低;从光合参数来看,番茄Pn和LCE的大小关系均表现为460 nm蓝光最大,其次445 nm,而绿光和红光Pn的大小关系与光照强度有关,低光强下绿光Pn最小,但光强超过480μmol·m-2·s-1时,红光660nm的Pn最小。445 nm蓝光还显著提高了叶片Vcmax、Jmax和TPU,其次为460 nm,两者之间差异不显著,其次为红光625 nm和660 nm,绿光下最低;从光合酶相关基因的表达来看,625 nm红光促进了rbc S、RCA和GADPH基因的表达,绿光520 nm则促进了Cab基因的表达量,但各光质处理间PGK基因表达量差异不显著。4.研究了单色光质(445 nm、520 nm和660 nm)和热胁迫对番茄果实表面光系统活性的影响。番茄果实光质胁迫结果表明:随着光强的增加(200-2500 umol·m-2·s-1),蓝光和红光处理番茄果实Fv/Fm、Y(Ⅱ)、ETR和Fv’/Fm’均呈“S”型下降趋势,光系统间激发能分配不平衡偏离系数β/α-1急剧上升,反映出高光强导致光系统间激发能分配的不平衡,PSⅡ和PSⅠ间线性电子传递的协调性降低;而绿光处理番茄果实表面叶绿素荧光参数相对来说变化不大,可能是绿光减少了叶绿素对光能的过度吸收,使得光抑制程度较轻;蓝光处理番茄果实表面Fv/Fm、Y(Ⅱ)、电子传递速率ETR和Fv’/Fm’均小于红光和绿光处理,并且随着光强的增加这种差距越来越明显,表明蓝光对光抑制更敏感,更容易受到强光胁迫的影响;另外,当光强为200~1000μmol·m-2·s-1时,番茄果实表面Fv/Fm、Y(Ⅱ)和Fv’/Fm’值红光绿光,超过1000μmol·m-2·s-1时,则绿光红光,反映出绿光处理番茄果实适应强光的能力较强。果实热胁迫结果表明:在较低的热胁迫下(36~43℃),Fv/Fm稳中有降,反映温度胁迫引起PSⅡ功能的部分抑制,而此时调节性能量耗散量子产量Y(NPQ)的增加耗散了过剩光能,以减轻过剩光能对光合机构的进一步伤害;当温度超过43℃时,非调节性能量耗散的量子产量Y(NO)显著增加,Fv/Fm,Fv’/Fm’和ETR急剧下降,Y(NPQ)开始下降,表明PSⅡ反应中心的天线色素耗散机制可能遭到破坏,对高温胁迫的自我调节功能开始下降,PSⅡ反应中心已开始失活,光抑制程度加重;当温度超过果实表皮PSⅡ蛋白复合体变性中点温度51.4℃时,激发能分配不平衡偏离系数β/α-1显著上升,叶绿素荧光衰减率Rfd急剧下降,反映此时激发能分配严重失衡,番茄潜在的CO2同化能力极弱。另外,通过对标准状态变性自由能变GD计算的变性中点温度Tm得出,Tm(Fv/Fm)大于Tm[Y(Ⅱ)],说明PSⅡ的耐热性稍强于整个光合作用。
[Abstract]:Protected cultivation has become a modern agricultural way to ensure the annual balanced supply of vegetables. However, due to the lack of light and the decrease of photosynthetic capacity, it has become an important factor limiting the high and stable yield of vegetable. Therefore, in-depth analysis of the regulation measures and related mechanisms to improve the efficiency of light energy utilization is the basic content and important direction of photosynthesis research, and also the key to excavate vegetable crops' single leaf or colony photosynthetic productivity. In this study, tomato (Lycopersicon esculentum Mill.) as the test material, the chlorophyll absorption within leaf and leaf light absorption difference, chlorophyll absorption spectra by non peak characteristics, and the red and blue light treatment intensity weakness caused by photosynthetic products lack of quality information regulation effect of crop growth is difficult to fully reflect the problem the driving effect, energy spectrum and signal control as the starting point, test and analysis of spectrum effect, leaves light absorption of different light conditions of light absorption and transfer system to capture distribution, transformation and its coupling of photosynthetic enzyme kinetics, explore the internal micro light interception characteristics of leaves at the same time, spectral analysis with light effect the photosynthetic pigment contents, anatomical structure, expression and related light synthase gene carbon metabolites, explore the tomato leaf photosynthetic organs and light The mechanism of light adaptation and regulation mechanism. The main results are as follows: 1. studied monochromatic light LED test source (determination of light fiber spectrometer) in tomato leaves under light absorption, combined with the distribution of energy flow and the theory of kubelka-Munk blade structure (K-M model) to calculate and analyze the light distribution within leaf. From the leaves of ventral light (epidermal direction) 79.08~88.18% photosynthetically active radiation PAR in tomato leaves was absorbed, the rest is leaf reflectance (9.82~12.01%) and transmission (0.79~5.08%) are lost from the back light (under the direction of the leaf epidermis) than the ventral light absorption rate decreased by 2.07~4.39%, which is based on the green 520 nm the largest decline; leaves from the inside, the palisade tissue of blue light (445 nm, 470 nm) absorption maximum (86.32% and 83.79%), red (625 nm, 660 nm) in (83.38%, 82.13%), green (520 nm) and lowest (77.53%), and the absorption of sponge tissue light but showed the opposite trend is up to 520 nm (13.15%), followed by red light (11.64% and 13.06%), the lowest (6.99% and 7.83%) Blu ray. Comprehensive analysis shows that the blade internal light light not only in spatial distribution have great changes (light absorption of palisade tissue than spongy tissue), and presents the heterogeneity of spectral features (rich red and blue in the palisade tissue and spongy tissue is relatively rich green). 2. of the LED light source (monochromatic light source test determination of Ciras- type portable photosynthesis instrument) under natural light culture of tomato leaf radiosity distribution transformation. From the kinetic parameters of chlorophyll fluorescence, with the increase of light intensity (200~1 500 mol - m-2 - s-1, tomato leaves photoinhibition is more sensitive to blue light, in the leaves of Tomato under PSII irradiation the photochemical quantum yield Fv/Fm, PS II Y the actual quantum yield (II), excitation energy capture efficiency of Fv'/Fm'decreased the degree of red and green light is more significant than the PS II reaction center electron transfer rate ETR and open, and the light intensity caused by decreased significantly when compared with the corresponding parameters of red and green low. From the protection mechanism of photoinhibition, red and green light are dominated by PS II regulatory energy dissipation pathway, rather than the regulation of energy dissipation pathway has stronger protection ability against Blu ray. From the photosynthetic spectral characteristic parameters of light response of blue light (470 nm and 445 nm) in tomato leaves under Pn, LCE and AQY were lower than that of red light (625 nm, 660 nm) and green light is different from previous studies of green leaves of Tomato under high Pn, when PAR is higher than 600 mol - m-2 - S-1 intensity when under 520 nm Pn after 625 nm red light; according to the photosynthetic response curve of CO2 calculated by Farquhar biochemical model fitting of tomato leaf Vcmax, Jmax and triose phosphate utilization rate of TPU at 660 nm is the largest, followed by 625 nm, 445 nm and blue light reflected in the lowest saturation intensity and 28 DEG C environment the red tomato leaves with high photosynthetic capacity, photosynthetic enzyme activity and ecological adaptability. 3. of the monochromatic light effect of culture on the growth and photosynthetic activity of tomato leaves. Blue light (445 nm, 460 nm) under cultivation of tomato plant stem diameter, dry matter content, seedling index and leaf thickness, palisade tissue, palisade tissue / spongy tissue compaction (P/S) CTR was higher than that of green and red, and blue light in the treatment of 460 nm and 625 nm red culture is particularly obvious, significantly increased the biomass of plants the object, promote stem elongation, but reduced leaf dry weight and fresh weight; 660 nm red light significantly increased tomato leaf chlorophyll a, chlorophyll b, total chlorophyll content and carotenoid content, but the lowest Chla/Chlb value; from the leaf light absorption situation of tomato leaves 460 nm blue light absorbance under the red and blue area two main active regions were the largest, followed by 445 nm blue light, red light and green light was the smallest. The chlorophyll fluorescence parameters, growth under different light conditions of tomato seedlings were Fv/Fm and Fv'/Fm'in addition to the 660 red nm was significantly lower than the control, no significant difference between other treatments; Y (II) and ETR showed the same trend, both in the 625 nm red light treatment significantly higher than that of control, respectively than control 7.03% and 10.09%, the maximum value of NPQ in tomato leaves with 660 nm red, followed by 460 nm blue light, green light from the lowest; photosynthetic parameters, the size relation of tomato Pn and LCE were performed for 460 nm blue, followed by 445 nm, and little relationship with light green and red light intensity on Pn under low light intensity, but the intensity of the green Pn minimum, more than 480 mol - m-2 - s-1, red 660nm Pn minimum. The 445 nm blue light also significantly increased the Vcmax and Jmax of the leaves
【学位授予单位】:河北农业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:S641.2

【参考文献】

相关期刊论文 前10条

1 肖汉;陈秀万;杨振宇;李怀瑜;朱瀚;;基于光谱分析的草地叶绿素含量估测植被指数[J];光谱学与光谱分析;2014年11期

2 武春霞;杨静慧;张小娥;刘艳军;黄俊轩;李建科;;4种豆科植物叶片的解剖结构及抗旱性[J];天津农业科学;2014年11期

3 王海珍;韩路;徐雅丽;牛建龙;;胡杨异形叶光合作用对光强与CO_2浓度的响应[J];植物生态学报;2014年10期

4 杨有新;王峰;蔡加星;喻景权;周艳虹;;光质和光敏色素在植物逆境响应中的作用研究进展[J];园艺学报;2014年09期

5 邓小蕾;李民赞;郑立华;张瑶;孙红;;基于反射光谱预处理的苹果叶片叶绿素含量预测[J];农业工程学报;2014年14期

6 孙娜;李岩;魏珉;王秀峰;史庆华;杨凤娟;米庆华;;补光对日光温室越冬番茄生长及产量品质的影响[J];天津农业科学;2014年03期

7 田晨霞;张咏梅;马晖玲;;草地早熟禾胚胎结构石蜡切片制作方法初探[J];草业科学;2013年12期

8 王娟;危常州;王肖娟;朱齐超;朱金龙;王金鑫;;采用灰板校正的计算机视觉预测棉花叶绿素含量[J];农业工程学报;2013年24期

9 邬奇;苏娜娜;崔瑾;;LED光质补光对番茄幼苗生长及光合特性和抗氧化酶的影响[J];北方园艺;2013年21期

10 刘晓英;焦学磊;徐志刚;陈彬;;红蓝LED光对水稻秧苗形态建成的影响[J];照明工程学报;2013年S1期

相关博士学位论文 前3条

1 刘志国;枣树对植原体侵染的光合响应及其抗性诱导研究[D];河北农业大学;2014年

2 梁亮;小麦冠层理化参量的高光谱反演[D];中南大学;2010年

3 王虹;光质对黄瓜幼苗光合效率和白粉病抗性的调控机理[D];浙江大学;2009年

相关硕士学位论文 前10条

1 白雪娇;冬小麦氮素营养及其冠层生物理化参量高光谱遥感监测[D];西北农林科技大学;2013年

2 王春昕;光对切花菊‘神马’生长和开花的影响[D];南京农业大学;2012年

3 马绍英;LED不同光对葡萄离体试管苗生理生化特性效应的研究[D];甘肃农业大学;2010年

4 薛占军;茄子碳同化与光系统Ⅱ的稳态和动态特性的研究[D];河北农业大学;2009年

5 李雯琳;LED光源不同光质对叶用莴苣种子发芽及幼苗生理生化特性的影响[D];甘肃农业大学;2009年

6 吴秀娟;大棚番茄品种比较与耐低温弱光指标的筛选[D];安徽农业大学;2009年

7 高玉;冀东秋黄瓜光系统Ⅱ的耐热性研究[D];河北农业大学;2008年

8 郑洁;不同光质对橘橙光合作用的影响及机理研究[D];浙江大学;2008年

9 杜洪涛;光质对彩色甜椒幼苗生长发育特性的影响[D];山东农业大学;2005年

10 刘艳阳;不同播期对小麦安全优质高产特性的影响[D];扬州大学;2003年



本文编号:1341598

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/1341598.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cf729***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com