当前位置:主页 > 硕博论文 > 农业博士论文 >

大兴安岭阔叶混交低质林不同改造模式效果的研究

发布时间:2017-12-28 09:43

  本文关键词:大兴安岭阔叶混交低质林不同改造模式效果的研究 出处:《东北林业大学》2015年博士论文 论文类型:学位论文


  更多相关文章: 大兴安岭 阔叶混交低质林 枯落物 土壤 改造模式


【摘要】:本文以大兴安岭阔叶混交低质林为研究对象,通过带状6m (S1)、10m (S2)、14m (S3)、18m (S4)和块状25m2 (G1)、100m2 (G2)、225m2 (G3)、400m2 (G4)、 625m2 (G5)、900m2 (G6)改造模式进行改造后,对各样地枯落物持水性能、土壤理化性质、土壤呼吸速率、物种多样性、植被生长等指标进行了连续5年的观测,分析了不同改造模式各项指标的动态变化,并且建立了综合评价模型,对不同改造模式进行了综合评价。研究结果可以准确掌握低质林改造过程中恢复的过程及现状,有助于低质林改造措施的开展与调整,有利于提升大兴安岭林区低质林的经营水平,提高森林质量和生产力,改善森林的多种生态功能,对大兴安岭林区可持续发展具有十分重要的意义。研究结果如下:(1)各改造样地枯落物蓄积量、最大持水量、有效拦蓄量随着时间的推移呈现先下降后上升的过程。样地S2、G2枯落物蓄积量、最大持水量、有效拦蓄量在改造后的第一年(2010年)明显高于对照样地(P0.05),在改造后的第二年和第三年(2011年和2012年)不同改造样地各指标都低于对照样地,到改造后的第五年(2014年)样地S2、G1、G2、G3枯落物各指标都高于对照样地,带状改造样地中样地S2枯落物蓄积量(11.14t·hm-2)、最大持水量(60.19t·hm-2)、有效拦蓄量(47.31t·hm-2)最高,块状改造样地中样地G2枯落物蓄积量(10.37t·hm-2)、最大持水量(58.50t·hm-2)、有效拦蓄量(46.19t·hm-2)最高。各样地半分解层枯落物蓄积量、最大持水量、有效拦蓄量等指标都高于未分解层枯落物。改造后第五年(2014年)各样地枯落物持水量与浸泡时间之间的关系满足对数曲线,枯落物吸水速率与浸泡时间之间的关系满足乘幂曲线。(2)各改造样地改造后第一年(2010年)土壤结构受到比较严重的破坏,土壤容重较高,土壤水分以及孔隙状况较差,之后随着更新植被的生长,土壤物理性质在波动过程中逐渐改善。各改造样地土壤pH值随时间的推移呈现先下降后上升的过程,同年各改造样地土壤pH值随样地面积增加而上升。各改造样地土壤有机质、全量养分和速效养分含量在改造后的前两年明显高于对照样地,之后随时间的推移开始流失下降,甚至低于对照样地,随着各改造样地人工更新苗木以及天然更新植被的生长,土壤养分含量又有所上升。在改造后第五年(2014年),带状改造样地S2、S3,块状改造样地G2、G3,土壤容重较低,持水能力较强,孔隙度较大,土壤养分含量较高。(3)各带状改造样地和对照样地白天土壤呼吸速率均高于夜间土壤呼吸速率,天当中土壤呼吸速率最高值一般出现在12:00-15:00,土壤呼吸速率最低值一般出现在23:00-3:00。各改造样地土壤呼吸速率随时间的推移先上升后下降,随后又上升,2014年各改造样地土壤呼吸速率都低于对照样地,且差异显著(P0.05),其中样地S3土壤呼吸速率(5.84nmol·m-2·s-1)最高。土壤呼吸速率与土壤温度的关系适合指数模型(R2为0.79-0.90),Q10值在2.23~2.66之间,土壤呼吸速率和土壤湿度(9%~27%)呈显著的二次曲线关系(R2为0.65-0.85),应用双因素复合模型拟合效果优于单因子模型,土壤温湿度能够共同解释各样地土壤呼吸速率的70.7%-92.5%。各样地土壤呼吸速率与土壤总孔隙度、有机质含量存在显著的正相关性,与土壤pH、氮含量及半分解枯落物蓄积量相关性也较高。(4)各样地在改造后第五年(2014年)乔木层物种样性评价指数都低于对照样地,其中S3的乔木层Shannon-wiener多样性指数(1.37)、Pielou均匀度指数(0.98)最高;各改造样地灌木层Shannon-wiener多样性指数、Pielou均匀度指数都高于对照样地,其中S4最高,达到了1.52、0.95;各改造样地草本层物种丰富度指数和Shannon-wiener多样性指数都高于对照样地,其中G6草本层Shannon-wiener多样性指数、Pielou均匀度指数最高,达到了2.08、0.87。在改造后的5年时间里各改造样地胸径和树高总生长量高于对照样地,带状改造样地中S2胸径和树高总生长量最高,分别达到了0.58cm、0.76m,块状改造样地中G3胸径和树高总生长量最高,分别达到了0.56cm、0.72m。在改造后第五年(2014年),样地S3红松连年生长率(20.47%)最高,连年生长量为6.91cm,样地S2樟子松连年生长率(20.69%)最高,连年生长量为5.02cm,样地G4兴安落叶松连年生长率(22.05%)最高,连年生长量为14.64cm。各改造样地苗木保存率随时间的推移下降幅度减小,在改造后第五年(2014年)样地S2红松、樟子松和兴安落叶松苗木保存率最高,分别达到了80.77%、78.85%、82.31%。(5)采用灰色关联分析法对改造后第五年(2014年)不同改造模式建立综合评价模型,筛选出28个指标,计算出10种改造模式的灰色关联度,据此评价各改造模式的改造效果,综合比较发现,带状改造模式总体上优于块状改造模式,带状改造模式中S2和S3改造效果较好,而块状改造模式中G2和G3改造效果较好。
[Abstract]:This paper takes Greater Khingan Range broad-leaved low quality forest as the research object, through the strip 6m (S1), 10m (S2), 14m (S3), 18m (S4) and block 25m2 (G1), 100m2 (G2), 225m2 (G3), 400m2 (G4), 625m2 (G5), 900m2 (G6) the transformation mode for the transformation, the kinds of litter water holding properties, soil properties, soil respiration rate, species diversity, vegetation growth and other indicators were observed for 5 years, analyzed the dynamic changes of the indexes of different transformation models, and establish a comprehensive evaluation model for comprehensive evaluation the transformation mode. The research results can accurately grasp the recovery of low-quality forest transformation process and the status quo, development and adjustment to help low quality forest improvement measures, is conducive to enhancing the Greater Khingan Range forest low quality forest management level, improve forest quality and productivity, improve the ecological function of forest energy is of great significance to sustainable development Greater Khingan Range forest region. The results are as follows: (1) the transformation like litter amount and the maximum water holding capacity, storing the amount of effective over time has decreased first and then increased. The first year of plots S2, G2 litter amount and the maximum water holding capacity, effective retaining content in the modified (2010) was significantly higher than the control sample (P0.05), in the transformation after second years and third years (2011 and 2012) of different transformation plots of each index were lower than the control plots, to the transformation of after fifth years (2014), S2 G1, like G2, G3 litter index was higher than the control plots, plots of the strip reform plots S2 litter volume (11.14t, hm-2), the maximum water holding capacity (60.19t - hm-2), storing the amount of effective (47.31t - hm-2) highest bulk modification in plots, plots G2 litter volume (10.37t, hm-2), the maximum water holding capacity (58.50t - hm-2), storing the amount of effective (46.19t - hm-2) highest. Kinds of semi decomposed litter amount and the maximum water holding capacity, storing the amount of effective index is higher than that of the non decomposed litter layer. After fifth years of reform (2014) of the relationship between litter water holding capacity and soaking time meet the logarithm curve and the relationship between litter water absorption rate and soaking time to meet the power curve. (2) in the first year (2010), the soil structure was seriously damaged, and the bulk density of soil was higher, and the soil moisture and pore condition were worse. Then, with the growth of regeneration vegetation, the physical properties of soil gradually improved during the transformation process. The soil pH value of the reformed plots decreased first and then increased with time, and the soil pH value of the reformed plots increased with the area of the sample land in the same year. Two years ago, the content of total nutrient and available nutrient in the transformation of soil organic matter, after the transformation was significantly higher than the control sample, after over time began to drain down, even lower than the control plots, with each kind of transformation artificial regeneration seedling growth and natural regeneration of vegetation, soil nutrient content increased. In the fifth years (2014) after the transformation, the S2 and S3 plots in the strip transformed plots, G2 and G3 in the reclaimed plots, had low soil bulk density, strong water holding capacity, large porosity and high soil nutrient content. (3) soil respiration rates in all plots and plots were higher than those at night. The highest values of soil respiration rate generally appeared in 12:00-15:00, and the lowest value of soil respiration rate was 23:00-3:00. The soil respiration rate of all transformed plots increased first and then decreased, and then increased again. The soil respiration rate of all plots in 2014 was lower than that of the control plots, and the difference was significant (P0.05). The S3 soil respiration rate (5.84nmol. M-2 s-1) was the highest in the plots. The relationship between soil respiration rate and soil temperature for the index model (R2 0.79-0.90), Q10 value in 2.23 ~ 2.66 between soil respiration rate and soil moisture (9% ~ 27%) was two times curve significantly (R2 0.65-0.85), the application of two factor composite model fitting is better than single factor model, soil temperature humidity can explain the soil respiration rate of 70.7%-92.5%. There was a significant positive correlation between soil respiration rate and soil total porosity and organic matter content. The correlation between soil respiration rate and soil pH, nitrogen content and semi decomposition litter volume was also high. (4) of fifth years (2014) in the reconstruction of tree layer species diversity index is lower than that of the control sample, the S3 Shannon-wiener tree layer diversity index (1.37), Pielou evenness index (0.98) the highest; each kind of transformation of shrub layer Shannon-wiener diversity index, Pielou evenness index higher than the control plots, in which S4 is the highest, reaching 1.52, 0.95; each kind of transformation of the herb layer species richness index and diversity index of Shannon-wiener is higher than that of the control sample, the G6 herb layer Shannon-wiener diversity index, Pielou evenness index was the highest, reached 2.08 and 0.87. In the transformation of the 5 years after the transformation of kind of tree height and DBH growth was higher than that of the control sample, S2 diameter and tree belt transformation plots of high total growth was the highest, reached 0.58cm, 0.76M, G3 diameter and tree block transformation plots in high growth was the highest, respectively. 0.56cm, 0.72m. In the reconstruction after fifth years (2014), S3 annual growth rate plots of Pinus koraiensis (20.47%) the highest annual growth amount is 6.91cm, sample S2 annual growth rate of Pinus sylvestris (20.69%) the highest annual growth amount is 5.02cm, G4 plots of Larch in Xingan (22.05%) the highest annual growth rate, the annual growth amount is 14.64cm. The preservation rate of seedlings decreased with time. The preservation rate of S2, Pinus sylvestris, Pinus sylvestris var. mongolica and Larix gmelinii seedlings in Xingan fifth years (2014) was the highest, reaching 80.77%, 78.85% and 82.31% respectively. (5) the comprehensive evaluation model was established by the grey correlation analysis method for different transformation models after the transformation of fifth years (2014).
【学位授予单位】:东北林业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:S756

【参考文献】

相关期刊论文 前10条

1 耿玉清;戴伟;余新晓;陈峻崎;;森林经营对土壤酶活性影响的研究进展[J];北京林业大学学报;2008年S2期

2 杨学春;董希斌;姜帆;蒙宽宏;;黑龙江省伊春林区低质林林分评定[J];东北林业大学学报;2009年10期

3 张泱;姜中珠;董希斌;蒙宽宏;;小兴安岭林区低质林类型的界定与评价[J];东北林业大学学报;2009年11期

4 刘美爽;董希斌;郭辉;蒙宽宏;范煜婷;;小兴安岭低质林采伐改造后土壤理化性质变化分析[J];东北林业大学学报;2010年10期

5 孟春;王立海;沈微;;小兴安岭针阔混交林择伐6a后林地土壤呼吸速率空间变异性[J];东北林业大学学报;2011年03期

6 张泱;宋启亮;董希斌;;带状皆伐改造对小兴安岭低质林土壤养分的影响[J];东北林业大学学报;2013年06期

7 曾翔亮;董希斌;宋启亮;崔莉;;阔叶混交低质林诱导改造后土壤养分的模糊综合评价[J];东北林业大学学报;2013年09期

8 张泱;曾翔亮;董希斌;宋启亮;;不同采伐强度后小兴安岭低质林土壤养分的灰色聚类评价[J];东北林业大学学报;2014年02期

9 李红振;李凤日;贾炜玮;王树芳;;大兴安岭不同类型白桦落叶松混交林枯落物水源涵养功能[J];东北林业大学学报;2014年06期

10 毛波;董希斌;宋启亮;白永清;;大兴安岭白桦低质林改造后土壤肥力的综合评价[J];东北林业大学学报;2014年10期

相关博士学位论文 前1条

1 侯淑艳;北京市低山区低效人工林结构特征与评价研究[D];北京林业大学;2013年

相关硕士学位论文 前3条

1 蒋倩仪;马尾松低质低效次生林经营调控模拟系统研究[D];中南林业科技大学;2010年

2 宋启亮;不同类型退化森林诱导改造后森林生态系统稳定性评价[D];东北林业大学;2012年

3 白艳;不同采伐方式对兴安落叶松林分特征及其植物多样性的影响[D];内蒙古农业大学;2012年



本文编号:1345558

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/1345558.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户19afa***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com