玉米叶片气孔发育对干旱的响应以及重复干旱对玉米光合作用和抗旱性的影响
本文选题:重复干旱 + 光合作用 ; 参考:《西北农林科技大学》2016年博士论文
【摘要】:干旱或半干旱地区生长的植物在其生命周期内可能会遭受不止一次的干旱胁迫。为了研究干旱胁迫对气孔发育和气体交换能力的影响以及作物对多次干旱的生理生化响应,本试验以玉米为材料,测定和分析了(1)不同水分处理下玉米叶片的气孔密度、气孔器大小和开张度的变化以及气体交换参数的变化,(2)玉米幼苗在中度和重度土壤干旱处理三周、随后的复水一周以及再次干旱处理三周下植株的生长、光合特性、抗氧化体系和渗透调节物质含量的变化,得出的主要结果如下:(1)在相同水分处理下,玉米抽雄期和灌浆期的叶片气孔密度和气孔器长度均高于拔节期,但气孔器宽度在各时期变化不大。干旱胁迫下,这三个时期玉米叶片的气孔密度增加、但体积变小;与此同时,在重度水分亏缺处理下,叶片的净光合速率(P_n)、蒸腾速率(T_r)和气孔导度(G_s)均显著降低。回归分析表明,气孔密度与P_n和T_r呈显著负相关关系,而与瞬时水分利用效率(WUEi)呈显著正相关关系。(2)当玉米幼苗遭受第一次水分处理后,在重度水分亏缺下,玉米株高、单株总叶面积、地上部分及根系生物量、以及叶片的T_r、G_s、胞间二氧化碳浓度(C_i)、P_n、最大净光合速率(A_(max))、光合色素含量和磷酸烯醇式丙酮酸羧化酶(PEPCase)活性均显著降低,但光补偿点、暗呼吸速率和乙醇酸氧化酶(GO)活性显著升高;叶片中O2ˉ、H2O2和丙二醛的含量以及相对电导率显著升高,同时,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)和谷胱甘肽还原酶(GR)等主要抗氧化酶的活性显著上升;作为主要渗透调节物质的游离氨基酸、脯氨酸和可溶性糖含量显著增加。中度水分亏缺处理同样显著降低玉米株高、叶面积和地上部分生物量,但对根系生物量无影响,因而根冠比增大,对光合参数的负向效应也不具有显著性;中度水分亏缺处理对玉米叶片膜系统的损伤较小,只引起了叶片中MDHAR活性的显著升高。(3)干旱后复水处理,可使前期经受中度和重度干旱处理玉米的光合能力、除较高的APX活性外上述生理生化指标和生长速率恢复到正常水分条件下生长的植株的水平,但株高和叶面积没有恢复到对照水平。(4)当玉米再次经受水分亏缺处理时,与只遭受第二次中度或重度干旱处理的植株相比,经历过前期中度干旱处理植株的株高、生物量和光合参数没有显著变化,但叶面积有显著下降;经历过前期重度干旱处理植株的T_r、G_s、C_i、P_n、A_(max)、表观量子效率、光合色素含量、PEPCase活性和GO活性有显著升高,而株高、叶面积和生物量则显著降低,植株叶片细胞膜透性显著降低、而游离氨基酸的含量显著升高,清除活性氧的关键酶SOD、CAT、APX、MDHAR和GR的活性有所增强。综上所述,(1)干旱胁迫引起玉米叶片的气孔密度增加和气孔变小,这种适应性变化与玉米叶片的光合作用和蒸腾作用显著负相关,而与WUEi呈显著正相关关系。(2)第一次重度水分亏缺处理显著降低玉米叶片的光合能力和生长,复水可使光合能力和生长速率恢复到正常水分条件下生长植株的水平,但不能消除前期干旱对生长产生的不利影响;前期中度干旱可以刺激玉米根系的生长和显著提高根冠比,有利于对二次干旱的抵抗能力,并使总的生物量保持在对照水平,而前期重度干旱处理虽然能够通过快速启动抗氧化防御体系和增强渗透调节能力提高植株对二次干旱的抵御能力,却不能弥补前期干旱处理对生长的不利影响。因此,在生产实践中,如果进行抗旱锻炼,应限制在中度干旱水平,避免重度干旱。
[Abstract]:Plants growing in arid or semi-arid areas may suffer from more than one drought stress during their life cycle. In order to study the effects of drought stress on stomatal development and gas exchange capacity and the physiological and biochemical responses of crops to multiple droughts, maize was used as material to determine and analyze (1) maize under different water treatments. The stomatal density, the size and opening of the stomata and the change of the gas exchange parameters, (2) the plant growth, photosynthetic characteristics, the changes of the photosynthetic characteristics, the antioxidant system and the osmotic regulator content of the maize seedlings in the moderate and severe soil drought treatment for three weeks, and the subsequent drought treatment for three weeks, and the changes in the content of the osmotic substances and the changes in the content of osmotic substances. The results are as follows: (1) under the same water treatment, the stomatal density and the stomatal length of the leaves in the maize and filling stages are higher than the jointing stage, but the width of the stomata varies little at all times. Under drought stress, the stomatal density of the maize leaves in these three periods increases, but the volume becomes smaller, and at the same time, under the severe water deficit treatment, The net photosynthetic rate (P_n), transpiration rate (T_r) and stomatal conductance (G_s) were significantly reduced. The regression analysis showed that the stomatal density was significantly negatively correlated with P_n and T_r, but had a significant positive correlation with the instantaneous water use efficiency (WUEi). (2) when the maize seedlings were subjected to the first water treatment, the maize plant was high under the severe water deficit. Total leaf area, aboveground and root biomass, T_r, G_s, intercellular carbon dioxide concentration (C_i), P_n, maximum net photosynthetic rate (A_ (max)), photosynthetic pigment content and phosphoenolpyruvate carboxylase (PEPCase) activity were significantly reduced, but light compensation point, dark respiration rate and glycolate oxidase (GO) activity increased significantly. The content and relative conductivity of O2, H2O2 and malondialdehyde in leaves increased significantly, while the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), mono dehydroascorbate reductase (MDHAR) and glutathione reductase (GR) increased significantly, as the main osmotic regulator. Free amino acids, proline and soluble sugar content increased significantly. Moderate water deficit treatment also significantly reduced maize plant height, leaf area and aboveground biomass, but had no effect on root biomass, so the root and crown ratio increased, and the negative effect on photosynthetic parameters was not significant; moderate water deficit treatment on maize leaf membrane. The damage of the system was small and only caused a significant increase in the activity of MDHAR in the leaves. (3) after the drought treatment, the photosynthetic capacity of the maize could be treated with moderate and severe drought, and the above physiological and biochemical indexes and growth rates were restored to the normal water level, but the plant height and leaf surface were higher than the higher APX activity. The product did not recover to the control level. (4) when the maize was again subjected to water deficit treatment, the plant height, biomass and photosynthetic parameters were not significantly changed, but the leaf surface accumulation was significantly lower than that of the plants treated with only second moderate or severe drought treatments. T_r, G_s, C_i, P_n, A_ (max), apparent quantum efficiency, photosynthetic pigments content, PEPCase activity and GO activity significantly increased, but plant height, leaf area and biomass decreased significantly, leaf cell membrane permeability was significantly reduced, and the content of free amino acids increased significantly. The activity of key enzymes in reactive oxygen species, SOD, CAT, APX, MDHAR, and the activity were found. In summary, (1) drought stress caused the increase of stomatal density and small stomata in maize leaves, which was significantly negatively correlated with photosynthesis and transpiration of maize leaves, and had a significant positive correlation with WUEi. (2) the first severe water deficiency could significantly reduce photosynthetic capacity and growth of maize leaves and rehydration. The photosynthetic capacity and growth rate can be restored to the level of plant growth under normal water conditions, but the adverse effects of early drought on growth can not be eliminated. Moderate drought in the early stage can stimulate the growth of maize roots and significantly increase the root and crown ratio, which is beneficial to the ability to resist the two drought and keep the total biomass in the control water. Although the early severe drought treatment can improve the resistance of plants to two droughts by rapidly starting the antioxidant defense system and enhancing osmotic regulation, it can not compensate for the adverse effects of early drought treatment on growth. Therefore, in the production practice, if the drought resistance exercise is taken, it should be restricted to moderate drought level and avoid it. Severe drought.
【学位授予单位】:西北农林科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S513
【相似文献】
相关期刊论文 前10条
1 张瑞美;彭世彰;徐俊增;吴宏霞;;作物水分亏缺诊断研究进展[J];干旱地区农业研究;2006年02期
2 张宪政,,苏正淑;作物水分亏缺伤害生理研究概况[J];沈阳农业大学学报;1996年01期
3 王云奇;陶洪斌;赵丽晓;赵鑫;晋鹏宇;王存凯;王璞;;玉米对水分亏缺的响应[J];玉米科学;2014年02期
4 彭世彰;蔡敏;孔伟丽;徐俊增;金小平;宋靖;;不同生育阶段水分亏缺对水稻干物质与产量的影响[J];水资源与水工程学报;2012年01期
5 Neil C.Turner;张晓勤;叶秦;;农作物水分亏缺研究现状及其测定技术进展[J];麦类作物学报;1990年05期
6 王石立,娄秀荣,沙奕卓;华北地区小麦水分亏缺状况初探[J];应用气象学报;1995年S1期
7 孙冠英;;水分亏缺应用的现阶段[J];内蒙古科技与经济;2013年18期
8 杨振伟,刘素云;气象因子与梨叶片水分亏缺的相关分析[J];华北农学报;1994年01期
9 张寄阳,孟兆江,段爱旺,刘祖贵,陈金平,刘占东;茎直径变化诊断棉花水分亏缺程度的试验研究[J];灌溉排水学报;2005年02期
10 胡根海;;短期水分亏缺对百棉1号叶绿素含量的影响[J];安徽农业科学;2010年06期
相关会议论文 前8条
1 童德中;高秀萍;杨家洪;张勇强;童兆平;;梨树在自然水分亏缺下的生理反应[A];中国园艺学会成立70周年纪念优秀论文选编[C];1999年
2 郭正琴;王一鸣;杨绍辉;冯磊;杨卫中;;作物水分亏缺信息的研究综述[A];农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第二分册[C];2005年
3 康西言;李春强;高建华;王鑫;;河北省冬小麦水分亏缺量的变化研究[A];第26届中国气象学会年会农业气象防灾减灾与粮食安全分会场论文集[C];2009年
4 王熊军;李伏生;曾黎明;陆文娟;银秋玲;;水分亏缺和施肥对玉米干物质积累和水分利用的影响[A];中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(中)[C];2008年
5 侯晓林;吕金印;山仑;;水分亏缺对小麦光合固碳及根系耗碳的影响[A];纪念殷宏章先生百年诞辰暨全国光合作用学术研讨会论文摘要汇编[C];2008年
6 李木英;王竹青;曾蕾;石庆华;潘晓华;谭雪明;;后期水分亏缺和增N对杂交稻衰老过程中叶片光合功能的影响[A];2012年中国作物学会学术年会论文摘要集[C];2012年
7 霍晓静;杨世凤;钱东平;唐娟;;作物水胁迫声发射监测系统的研究及应用[A];全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(上)[C];2003年
8 王军;黄冠华;郑建华;贾冬冬;;不同生育期水分亏缺对甜瓜产量和品质影响研究[A];现代节水高效农业与生态灌区建设(上)[C];2010年
相关重要报纸文章 前1条
1 杨少俊 武俊杰;浅说作物限额灌溉[N];陕西科技报;2006年
相关博士学位论文 前7条
1 赵文赛;玉米叶片气孔发育对干旱的响应以及重复干旱对玉米光合作用和抗旱性的影响[D];西北农林科技大学;2016年
2 李国臣;植物水运移机理分析与温室作物水分亏缺诊断方法的研究[D];吉林大学;2005年
3 张卫星;超级稻品种穗生长发育和灌浆结实对水分亏缺的响应及其机理[D];中国农业科学院;2008年
4 杨卫兵;小麦多胺和乙烯合成对水分亏缺的响应及其与籽粒灌浆特性的关系[D];山东农业大学;2014年
5 杨玲;水分亏缺条件下旱稻根系发生发育及相关基因的表达分析[D];浙江大学;2003年
6 赵丽英;小麦对水分亏缺的阶段性反应及其机制研究[D];西北农林科技大学;2005年
7 胡笑涛;温室番茄局部控制灌溉节水调控机制与水分亏缺诊断[D];西北农林科技大学;2012年
相关硕士学位论文 前10条
1 王允;不同生育期水分亏缺对盆栽棉花生长发育的影响[D];华中农业大学;2016年
2 徐爱华;水分亏缺对产量和水分吸收的影响[D];华中农业大学;2013年
3 牛云慧;日光温室番茄对水分亏缺的响应研究[D];西北农林科技大学;2013年
4 马旭凤;水分亏缺对玉米生理指标、形态特性及解剖结构的影响[D];西北农林科技大学;2010年
5 石喜;玉米水分亏缺的生理生化响应及补偿效应研究[D];西北农林科技大学;2009年
6 王熊军;水分亏缺和施肥对玉米、大豆生长和水分养分利用的影响[D];广西大学;2008年
7 陈静静;水分亏缺和施氮对作物生长和氮素吸收的影响[D];西北农林科技大学;2011年
8 姜淑欣;水分亏缺对不同抗旱性小麦穗部光合及蔗糖合成代谢的影响[D];西北农林科技大学;2014年
9 白登忠;水分亏缺下番茄水分传输途径和根冠大小对蒸腾和WUE的调控[D];西北农林科技大学;2003年
10 乌兰;水分亏缺对马铃薯生长发育、激素变化及块茎产量的影响[D];内蒙古农业大学;2015年
本文编号:2030592
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2030592.html