普通小麦—冰草6P染色体缺失系和易位系创制与遗传分析
本文选题:普通小麦 + 冰草6P染色体 ; 参考:《中国农业科学院》2016年博士论文
【摘要】:普通小麦(Triticum aestivum L.,2n=6x=42,AABBDD)遗传基础狭窄限制了其产量的提高和品质的改良。冰草(Agropyron cristatum.,2n=4x=28,PPPP)6P染色体携带有多花多粒产量相关性状,以及抗叶锈、白粉等抗病基因,将其导入普通小麦是增加小麦遗传多样性、增强小麦抗病性、提高小麦产量的有效途径。本研究以小麦-冰草6P二体异附加系4844-12为基础材料,通过γ射线辐照的方法,利用分子细胞遗传学技术,创制冰草6P染色体缺失系和小麦-冰草6P异源易位系。1、一种高效诱导小麦-冰草6P异源易位方法:通过选择合适的诱变参数(辐照剂量为20 Gy,剂量率为0.5 Gy/min),对处于开花期的小麦-冰草6P二体异附加系4844-12植株进行辐照,对获得的诱变后代进行基因组原位杂交检测(GISH),从中筛选小麦-冰草6P易位系,易位频率超过10%。2、冰草6P染色体分子标记图谱构建:利用高效诱导小麦-冰草异源易位方法,获得了一系列冰草6P染色体缺失系和小麦-冰草6P易位系,在此基础上,构建了冰草6P染色体分子标记图谱。本研究将255个6P特异STS标记定位到31个染色体区段上:119个STS标记将6P短臂划分为14个区段,136个STS标记将6P长臂划分为17个区段。同时,将13个6P特异SLAF标记定位到相应染色体区段上,其中3个SLAF标记被定位到6P短臂,10个SLAF标记位于6P长臂。3、冰草6P染色体缺失系的获得与分类:利用杀配子染色体和辐照诱导的方法,获得31个冰草6P染色体缺失系。通过GISH与分子标记图谱检测方法,根据携带6P遗传成分的异同,将31个缺失株系划分为18个类型:8个长臂缺失系(短臂端体)、5个长臂末端缺失系(含6P短臂)、1个长臂臂间缺失系(含6P短臂)、3个长臂末端缺失系(不含6P短臂)、2个长臂臂间缺失系(不含6P短臂);6个短臂缺失系(长臂端体)、5个短臂末端缺失系(含6P长臂)和1个短臂末端缺失系(不含6P长臂)。目前,已获得自交F7、M7和M3代自交世代、BC3F1回交世代及BC2F2回交自交世代种子。4、小麦-冰草6P异源易位系的分子细胞学检测:通过高效诱导方法,本研究获得一系列小麦-冰草6P易位系,通过多代回交与检测,目前得到66个小麦-冰草6P易位系,最高回交世代为BC3F1代,回交自交BC2F2代。对其中31个易位株系进行了FISH与分子标记检测:共涉及小麦6个部分同源群的12条染色体与冰草6P染色体发生重组:17、5和9个株系与小麦A、B和D组染色体发生易位,参与易位的小麦染色体有1A、4A、5A、6A、7A、1B、5B、7B、1D、3D、5D和6D。31个易位株系携带6P染色体不同/重叠区段,覆盖整条6P染色体:15个易位株系携带6P短臂或部分短臂区段,9个株系携带6P长臂或部分长臂区段,7个易位株系同时携带6P短臂和长臂部分区段。并且,对7个整臂易位系和1个着丝粒融合小片段易位系进行了着丝粒鉴定:4个整臂株系携带冰草着丝粒,3个整臂易位株系携带小麦着丝粒,1个着丝粒融合小片段易位系同时携带冰草和小麦着丝粒,为双着丝粒易位。5、冰草6P染色体缺失系和小麦-冰草6P易位系农艺性状初步分析:通过对6P染色体缺失系多代穗部性状调查,长臂端体结实要好于短臂端体,推测6P染色体长臂携带有控制多粒性状的主效位点;31个小麦-冰草6P易位系中4个易位株系表现高穗粒数、1个易位株系表现高千粒重、3个易位株系同时表现高穗粒数和高千粒重性状。除产量相关性状外,利用冰草6P染色体缺失系,将6P来源的抗叶锈病基因定位到短臂末端区6PS-0.81-1.00。15个携带该区段的小麦-冰草6P易位系对叶锈病表现为抗病。本研究建立了一种高效诱导小麦-冰草6P异源易位方法,为小麦与其他近缘植株基因组间异源易位系的创制提供借鉴;构建了冰草6P染色体分子标记图谱,为小麦背景下6P特定染色质区段的快速追踪与检测提供分子标记;获得的冰草6P染色体缺失系,为6P优异基因的染色体区段定位及结构与功能分析提供遗传材料;创制了不同类型的小麦-冰草6P易位系,为有效利用6P优异基因提供了广泛的遗传基础。
[Abstract]:The genetic base of common wheat (Triticum aestivum L., 2n=6x=42, AABBDD) restricts the improvement of its yield and the improvement of its quality. The 6P chromosomes of the ice grass (Agropyron cristatum., 2n=4x=28, PPPP) carry multiple flower and multiple grain yield related traits, as well as anti leaf rust, white powder and other anti disease genes, which are introduced into common wheat to increase wheat genetic diversity. In order to enhance the resistance of wheat and increase the yield of wheat, this study uses the 6P two body heterologous line 4844-12 as the base material, using the method of gamma ray irradiation, using molecular cytogenetic techniques to create the 6P chromosome deletion line and the 6P Alien Translocation Line of the wheat - agrograss,.1, a highly efficient induction of wheat - ice grass 6P heterologous source. By selecting suitable mutagenic parameters (irradiation dose of 20 Gy and dose rate of 0.5 Gy/min), 4844-12 plants of 6P two body heterossoming line at flowering stage were irradiated, and genomic in situ hybridization (GISH) was used to detect the obtained mutagenic progeny by genomic in situ hybridization (GISH), and the frequency of translocation was more than 10%.2 and ice was more than 10%.2. Molecular marker mapping of 6P chromosome: a series of 6P chromosome deletion and wheat - ice grass 6P translocation system were obtained by efficient induction of wheat - ice grass translocation. On this basis, a molecular marker map of the 6P chromosome of ice grass was constructed. 255 6P specific STS markers were located on 31 chromosomal segments: 119 STS The tag divides the short arm of 6P into 14 sections, and 136 STS markers divide the long arm of the 6P into 17 sections. At the same time, 13 6P specific SLAF markers are positioned on the corresponding chromosome section, of which 3 SLAF markers are located to the 6P short arm, the 10 SLAF markers are located in the 6P long arm.3, and the 6P chromosome of the ice grass chromosome is obtained and classified: using the gametophyte chromosome and the classification of the chromosomes. 31 6P chromosome deletion lines were obtained by irradiation induction. By means of GISH and molecular markers, 31 missing strains were divided into 18 types: 8 long arm deletion (short arm end body), 5 long arm end deletion (including 6P short arm), 1 long arm inter arm deletion (including 6P short arm), 3 long arm deletions (including 6P short arm), 3 The long arm terminal deletion (without 6P short arm), 2 long arm deletions (without 6P short arm), 6 short arm deletion (long arm end body), 5 short arm terminal missing lines (including 6P long arm) and 1 short arm terminal missing lines (without 6P long arm). At present, the self intersection F7, M7 and M3 generation, BC3F1 backcross and BC2F2 backcross generation.4, Molecular cytological detection of wheat - 6P heterologous translocation system: a series of wheat - pagan 6P translocation system was obtained by efficient induction method. Through multi generation backcross and detection, 66 wheat - pagan 6P translocation system was obtained. The highest backcross generation was BC3F1 generation and backcross to BC2F2 generation. Of these, 31 translocation lines were carried out by FISH and molecule. Marker detection: a total of 12 chromosomes of 6 homologous groups of wheat and 6P chromosomes were reorganized: 17,5 and 9 strains of wheat were translocated with wheat A, B and D. The chromosomes involved in translocation wheat were 1A, 4A, 5A, 6A, 7A, 1B. Color body: 15 translocation lines carry 6P short arm or part short arm section, 9 lines carry 6P long arm or part long arm section, 7 translocation lines carry 6P short arm and long arm section. And 7 whole arm translocation lines and 1 centromeric fusion small fragment translocation lines are identified: 4 whole arm lines carrying ICER centromere, 3 The whole arm translocation line carries wheat centromere, 1 centromere fusion small fragment translocation lines carry ice grass and wheat centromere, which are double centromere translocation.5, 6P chromosome deletion line and wheat bice 6P translocation system preliminary analysis of agronomic characters. The long arm end body seed setting is better by investigating the panicle characters of the multiple generation of 6P chromosome missing lines. In the short arm end body, it is speculated that the 6P chromosome long arm carries the main effect locus that controls multiple grain traits; 4 translocation lines in 31 wheat - pagan translocation lines show high spikes, 1 translocation lines show high 1000 grain weight, and 3 translocation lines also exhibit high spikes and high thousand grain weight traits. Except for yield correlation, the 6P chromosome lack of ice grass is used. In this study, a highly efficient method of inducing 6P heterologous translocation for wheat - ICER 6P was established to provide a loan for the generation of heterologous translocation lines between wheat and other close plant strains, by locating the anti leaf rust gene of 6P from the end of the short arm. In order to provide molecular markers for the rapid tracking and detection of 6P specific chromatin segments under wheat background, the molecular markers of 6P chromosome marker in the background of wheat were constructed. The acquired 6P chromosome deletion system provided genetic materials for the location of chromosomal segments and the structural and functional analysis of the excellent 6P genes, and the creation of different types of 6P translocation of wheat and ice grass. It provides a broad genetic basis for the effective utilization of 6P gene.
【学位授予单位】:中国农业科学院
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S512.1
【相似文献】
相关期刊论文 前10条
1 李莉;贾纳提;刘梦;马海燕;巴克儿·图尔荪巴克;;冰草抗旱性的初步研究[J];草食家畜;2012年02期
2 云锦凤,米福贵;冰草属分类学研究的历史回顾[J];中国草地;1989年02期
3 云锦凤,米福贵;冰草的种子萌发、生长发育及其开花生物学[J];中国草地;1989年04期
4 王建华,郑炯,唐玉芬,张银国,尚新刚,何其宏,苏胜强,赵清;高冰草在低山干旱区的适应性研究初报[J];石河子科技;1994年01期
5 赵清,刘辉,姜春;高冰草[J];中国草地;1998年04期
6 武保国;冰草[J];农村养殖技术;2003年12期
7 杨霞,常根柱,孙吉雄;美国高冰草兰州引种栽培试验[J];草原与草坪;2004年03期
8 赵萌莉;云锦凤;珊丹;韩冰;桂满全;;不同放牧压力下冰草种群可塑性变化的初步研究[J];中国草地学报;2006年01期
9 殷国梅;刘永志;阿拉塔;哈斯;;“蒙农杂种”冰草的生物学特性初探[J];内蒙古草业;2006年01期
10 霍秀文;云锦凤;米福贵;魏建华;张辉;;共转化法获得蒙农杂种冰草转基因植株[J];中国农业科学;2006年10期
相关会议论文 前3条
1 杨霞;常根柱;孙吉雄;;美国高冰草兰州引种栽培试验[A];草原与草坪研究论坛文集[C];2004年
2 杨冉;李俊芳;李立会;张相岐;;不同倍性冰草中HMW-GS的克隆与鉴定[A];中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008)[C];2008年
3 李小雷;于卓;马艳红;周亚星;李晓宇;李长青;刘宇杰;;几种披碱草种间杂种F1遗传特性及冰草分子图谱构建[A];中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008)[C];2008年
相关重要报纸文章 前3条
1 记者 张丽 整理;冰草的种植技术[N];新疆科技报(汉);2007年
2 潘全山;冰草[N];农民日报;2001年
3 ;导入冰草基因:小麦不得白粉病[N];科技日报;2005年
相关博士学位论文 前10条
1 韩海明;冰草属P基因组特异序列分离及其在小麦—冰草衍生后代中的应用[D];中国农业科学院;2015年
2 宋利强;普通小麦—冰草6P染色体缺失系和易位系创制与遗传分析[D];中国农业科学院;2016年
3 金晓明;米氏冰草繁殖生态学特征及种群竞争机制[D];北京林业大学;2011年
4 李景欣;内蒙古冰草种质资源遗传多样性研究[D];内蒙古农业大学;2005年
5 王桂花;转基因冰草植株检测、抗性鉴定及原材料筛选研究[D];内蒙古农业大学;2007年
6 张众;蒙农1号蒙古冰草品种特性与种子生产研究[D];内蒙古农业大学;2006年
7 闫伟红;冰草属和鹅观草属部分植物种质资源遗传分析[D];中国农业科学院;2010年
8 霍秀文;冰草组织培养再生体系建立及耐旱转基因研究[D];内蒙古农业大学;2004年
9 武军;小麦—冰草特异种质的遗传分析[D];西北农林科技大学;2006年
10 赵彦;蒙古冰草抗旱相关基因克隆、表达及RNAi载体构建[D];内蒙古农业大学;2009年
相关硕士学位论文 前10条
1 腰苗苗;小麦-冰草衍生系“普冰7-4”抗白粉病与矮秆性状的遗传分析[D];中国农业科学院;2015年
2 卓小凤;基于形态学和GBSSI基因对冰草(Agropyron cristatum(L.)Gaertner)的系统发育及遗传多样性研究[D];四川农业大学;2015年
3 余双炳;基于单拷贝核Pgk1基因在Agropyron cristatum中谱系地理学研究[D];四川农业大学;2015年
4 李静;干旱胁迫对蒙古冰草(Agropyron mongolicum Keng)幼苗生理特性及种子萌发的影响[D];内蒙古师范大学;2009年
5 徐春波;利用基因工程技术改良冰草抗旱性的初步研究[D];内蒙古农业大学;2005年
6 穆怀彬;荒漠草原种植的三种冰草生物生态学特性研究[D];内蒙古农业大学;2005年
7 解继红;冰草组织培养再生体系的研究[D];内蒙古农业大学;2006年
8 秀花;放牧胁迫下冰草适应机理的研究[D];内蒙古农业大学;2006年
9 包金刚;蒙农1号蒙古冰草生物学特性及生产性能的研究[D];内蒙古农业大学;2006年
10 高海娟;冰草生态生物学及细胞学初步研究[D];内蒙古农业大学;2007年
,本文编号:2039299
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2039299.html