水稻褐飞虱抗性基因的遗传定位及近等基因系的构建和抗性评价
[Abstract]:Rice (Oryza sativa L.) is the staple food for more than half of the world's population. Nilaparvata lugens St? L (BPH) is one of the most serious insect pests in rice. The most economical and environmentally friendly strategy for controlling the brown planthopper is to use rice resistance gene to breed the insect resistant varieties. At present, 30 resistant genes have been reported in rice, of which 7 have been cloned. However, there are fewer genes used in breeding, and most of the genes are identified in different genetic backgrounds, and their effects and breeding prospects are difficult to be accurately evaluated. Therefore, in this study, we have exploited the new resistance gene by using the method of map cloning and constructed the marker-assisted selection, MAS body by molecular marker. The near isogenic line (near-isogenic line, NIL) of 13 resistant genes which have been located or cloned by predecessors in the 9311 background were constructed, and the effects of these resistance genes were accurately distinguished and evaluated by combining with the genotypes and resistant phenotype. The main results are as follows: the molecular linkage analysis of the use of molecular markers, we are in the susceptible variety 9311. In the F2:3 population derived from AUS69 hybrid, two main effects QTL were located, and they were temporarily named Bph30 and Bph31., respectively, between J63 and RM252 on chromosome fourth and eleventh chromosome short arm markers RM536 and RM1355 respectively, the additive effects were 1.56 and 1.14 respectively, LOD values were 9.46 and 6.18, respectively. The variant was 11.65% and 5.95%. through the screening of the recombinant single plant and its genotype and phenotype analysis. We finally located Bph31 between marker 11-165 and In88 (400 KB). We found two curl helix (coiled-coil, CC), nucleotide binding site (nucleotide-bingdin) through the reference sequence of the gene annotation in this section of Japan. G site, NBS), leucine repeat (leucine-rich repeat, LRR) (CC-NBS-LRR) genes, named LRR1 and LRR2., respectively, we sequenced and compared the difference between the two parents 9311 and AUS69 in these two genes, but only measured the front part of the LRR1 and the full length gene. The sequence of amino acids found that the two genes had a large variation between two varieties. The results showed that LRR1 and LRR2 might play a role in the resistance of AUS69, but there was still to be verified by genetic transformation. Using MAS and backcross breeding techniques, we originated 13 brown planthopper resistance genes, such as RH (Bph3), from 9 donors. And Bph17), B5 (Bph14 and Bph15), IR54751-1-2-44 (QBph3 and QBph4), IR65482-4-136 (Bph10), IR71033-121 (Bph20 and Bph21), respectively, through forward selection, reverse selection and background screening of the chip, we finally get 13 9311 backgrounds. NILs. we examined the nectar secretion and survival rate of the 13 NILs seedlings on the NILs, and the results showed that the resistance gene was significantly increased by the resistance gene, and the honeydew secretion and survival rate of the brown planthopper were reduced. In the seedling resistance, the two families of Bph24-NIL and Bph6-NIL were highly resistant and resistant to high resistance. The sex levels were 1.31 and 1.96, followed by the resistant families Bph3-NIL, QBph3-NIL, Bph15-NIL, Bph9-NIL and QBph4-NIL, and the resistance grades were 2.34,2.09,2.38,2.42 and 2.49, and the secondary resistant families were Bph17-NIL, Bph20-NIL and Bph14-NIL, the resistance grade was divided into 2.74,3.16 and 3.37, and the last was the median sense of family Bph10. The resistance genes on chromosome fourth (QBph4, Bph17, Bph15, Bph20, Bph24 and Bph6) were generally more resistant than the resistance genes on chromosome twelfth (QBph4, Bph17, Bph15, Bph20, Bph24 and Bph6) on chromosome fourth. The resistance genes on chromosome twelfth were more resistant to the 9311 background. The secretion of honeydew from the brown planthopper after feeding. The trend of the quantity and survival rate is basically consistent with the resistance of the seedling stage. There are three gene clusters in the 13 resistant genes used in this study, of which the cloned genes are Bph14, Bph17, Bph18, and Bph26., according to the sequence, the.Bph10 and Bph21 encoded amino acid sequences of the different alleles of Bph18 and Bph26 are exactly the same as Bph26.Bph9 and Bph26. The amino acid sequences of different.QBph3 encoded amino acids with some amino acids in the first and second exons are distinctly different from that of Bph14. They have a lot of amino acids in the LRR region and the amino acid sequences encoded by a lot of amino acids are exactly the same as Bph17, while the amino acid sequences encoded by QBph4, Bph20 and Bph24 have some amino acids compared to Bph17. Based on the comparison of the phenotypic and amino acid sequences of different genes NILs in the above gene cluster, we speculate that Bph10, Bph21 and Bph26, Bph15 and Bph17 may be the same genes; QBph3 and Bph14, QBph4 and Bph20 may be different alleles; Bph9, Bph18 and may be complex alleles, and may be different genes.
【学位授予单位】:华中农业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S435.112.3
【相似文献】
相关期刊论文 前10条
1 李任华;新的抗性基因导入水稻已成为现实[J];杂交水稻;1991年01期
2 杨朗,李容柏,李杨瑞;水稻褐飞虱抗性基因的初步定位(英文)[J];分子植物育种;2005年06期
3 陈昊;赵森;肖国樱;;mRNA差异显示技术在分离水稻抗性基因中的应用[J];安徽农业科学;2007年13期
4 谢培;邓其明;王世全;李双成;李平;;水稻稻瘟病抗性基因研究进展[J];湖南农业科学;2011年05期
5 洪孟民,蔡瑞珠,张景六,杨蕴刘,郑霏琴,陈剑民;细菌抗药质粒中抗性基因的转座作用[J];遗传学报;1979年03期
6 ;害虫的抗药性[J];山西果树;1983年04期
7 刘志武;鉴别抗性基因的新方法[J];作物杂志;1985年02期
8 邓其明;周鹏;林琳;王世全;李双成;李平;;水稻稻瘟病抗性基因研究进展及其在育种上的应用[J];安徽农业科学;2009年04期
9 康美花;曹丰生;陈红萍;刘建华;杨水莲;杨素芬;裴冬莲;;水稻稻瘟病抗性基因研究进展及其在育种上的应用[J];江西农业学报;2010年02期
10 杨一龙;程治军;李伟;马建;马进;王久林;雷财林;;水稻稻瘟病部分抗性基因的定位与克隆研究进展[J];作物杂志;2010年06期
相关会议论文 前10条
1 季芝娟;陈红旗;潘学彪;马良勇;朱旭东;杨长登;;水稻抗病多基因的聚合及应用[A];全国植物分子育种研讨会摘要集[C];2009年
2 万康康;程文娟;董五辈;;玉米近缘种——大刍草的抗性基因筛选[A];中国植物病理学会2012年学术年会论文集[C];2012年
3 袁翠平;邱丽娟;;大豆胞囊线虫抗性基因定位与克隆研究进展[A];全国作物生物技术与诱变技术学术研讨会论文摘要集[C];2005年
4 李容柏;杨朗;陈英之;韦素美;黄凤宽;陈乔;刘驰;黄大辉;马增凤;张月雄;;稻褐飞虱抗性基因分子标记及互作关系研究[A];中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008)[C];2008年
5 孙琳琳;蒋继志;;生物信息学及其在作物抗性基因研究中的应用[A];中国植物病理学会2006年学术年会论文集[C];2006年
6 陈仕高;蒲正国;谢雪梅;刘春;肖晓华;谯青春;王泽乐;;水稻褐飞虱在化控与不防情况下的种群变化比较研究[A];庆祝重庆市植物保护学会成立10周年暨植保科技论坛论文集[C];2007年
7 黄贤夫;叶建人;冯永斌;;近年温岭市水稻褐飞虱发生为害特点与防治对策[A];植物保护与农产品质量安全论文集[C];2008年
8 曹奎荣;朱金良;孙祥良;;水稻褐飞虱防治的研究进展[A];植物保护与农产品质量安全论文集[C];2008年
9 李国振;;2006年开封市水稻褐飞虱暴发成灾原因及防控对策[A];河南省植物保护研究进展Ⅱ(上)[C];2007年
10 刘华林;王柏清;董金梅;;水稻褐飞虱危害损失率评估方法探索[A];华中昆虫研究(第五卷)[C];2008年
相关重要报纸文章 前5条
1 本期嘉宾 翟保平(南京农业大学昆虫学系教授) 主持人 柳书节 王伟;水稻褐飞虱会不会再袭江苏[N];江苏农业科技报;2006年
2 本报记者 徐书果;郑育8号:周麦丰产基因和百农抗性基因的完美结合[N];河南科技报;2014年
3 范峥;我市全面打响“虫口夺粮”战[N];江阴日报;2006年
4 通讯员 左年生 记者 李涛;郊县全面打响“虫口护粮”战[N];南京日报;2006年
5 叶群青;抗稻白叶枯病近等基因系培育成功[N];科技日报;2001年
相关博士学位论文 前10条
1 肖聪;水稻褐飞虱抗性基因的遗传定位及近等基因系的构建和抗性评价[D];华中农业大学;2017年
2 王琦;水稻条纹叶枯病抗性基因的图位克隆与功能分析[D];南京农业大学;2013年
3 胡杰;水稻褐飞虱抗性基因的遗传定位和聚合效应分析[D];华中农业大学;2013年
4 冯俊彦;三个小麦品系条锈病抗性基因的遗传分析及其分子标记[D];四川农业大学;2014年
5 侯丽媛;小偃麦渗入系对小麦真菌病害的抗性基因定位[D];山西大学;2016年
6 张晓峰;基于籼稻全基因组剖析抗性基因的结构及其分布特点[D];浙江大学;2004年
7 刘凤楼;大麦成株叶锈病抗性基因的发掘、分子标记及遗传研究[D];西北农林科技大学;2010年
8 吕鹏;可食用资源家蚕的核型多角体病毒抗性基因的高通量分子标记筛选、定位及相关基因功能[D];江苏大学;2014年
9 李得孝;大豆花叶病(SMV)抗性基因鉴定、分子验证、基因聚合与表达研究[D];西北农林科技大学;2009年
10 谭明谱;水稻白叶枯病抗性基因Xa22(t)的克隆[D];华中农业大学;2004年
相关硕士学位论文 前10条
1 李宛蔓;红霉素对底泥微生物群落结构及抗性基因的影响[D];华南理工大学;2015年
2 徐莉柯;城市自来水处理系统中抗生素抗性基因的行为特征[D];浙江大学;2015年
3 孙翠花;小偃麦新种质抗白粉病特性遗传及其抗性基因定位[D];山西大学;2014年
4 阿山(NSABIYUMVA ATHANASE);抗褐飞虱基因导入部分种间杂交稻亲本选系的研究[D];华中农业大学;2015年
5 赵小燕;水稻新品种抗性基因检测、籼粳属性鉴定及杂种优势预测[D];浙江师范大学;2015年
6 牛天琦;鸡粪中多重耐药细菌的分离鉴定及介导抗性基因水平转移元件的检测[D];河南师范大学;2015年
7 王凯;水环境中抗生素抗性细菌和抗性基因去除技术的研究[D];山东农业大学;2015年
8 李彬;粳稻两系不育系7001S中抗稻瘟病基因的克隆和功能验证[D];四川农业大学;2014年
9 巢娟;辣椒根腐疫病抗性基因的精细定位的研究[D];湖南农业大学;2015年
10 李超;新疆地区典型污染源抗生素抗性基因的污染分布的研究分析[D];石河子大学;2016年
,本文编号:2121172
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2121172.html