白菜黄化突变体pylm遗传及突变基因定位
[Abstract]:A variety of leaf color mutants have been found in many plants, such as Arabidopsis, rice, corn, tomato and Brassica napus. The Yellow mutant is the most common leaf color mutant. It is the study of chlorophyll biosynthesis, the structure and development of leaf green, photosynthesis mechanism, gene function and the function of the plant. .Brassica rapa L.ssp.chinensis belongs to the subspecies of Brassica Brassica in the cruciferous family Brassica, and it is an important leaf vegetable crop. The Yellow mutant py/m of Chinese cabbage is the test material of the Chinese Cabbage Hybrid 'Hua Guan', which was introduced from the Japanese Musashi wild seed company. A double haploid DH lineage obtained from microspore culture. Based on the identification of the physiological and biochemical characteristics of pylm, the genetic characteristics of the mutant traits were analyzed. The mutation gene was identified by the BSR-Seq method. The main results were as follows: 1. the morphological characteristics, photosynthetic characteristics and leaves of the mutant pylm. The mutant pylm of the green body was yellowing from the seed germination. The Yellow phenotype of the plant was stable during the whole growth period. The plant growth was weak, the hypocotyl of the seedlings was obviously elongated, and the early bolting and flowering.Pylm belonged to the total chlorophyll mutant. The stomatal conductance, the transpiration rate, the main fluorescein parameters and the net photosynthetic rate were significantly lower than those of the control strain. CK-51'showed that the decrease of photosynthetic pigment content affected the photosynthesis of the plant, the.Pylm chloroplast lamellae were sparse, the structure was irregular, the stacking degree was low, and the chlorophyll deficiency of the.2. mutant pylm without starch grain deposition was determined by the content of the intermediate metabolites of 8 main chlorophyll biosynthesis in the mutant pylm leaves. The contents of ALA, PBG, Urogen III, Coprogen III and Proto IX were significantly lower than those of the control'CK-51', Mg-Proto IX, Pchlide and Chlide were significantly higher than those of the control. The expression pattern of 34 chlorophyll biosynthesis related genes in 1'was analyzed. Most of the chlorophyll biosynthesis related genes were downregulated in pylm, of which the expression of HEMA1, CHLI2, POR C, CHLP, cHLG and c4O downregulated significantly, indicating that the mutant genes affected most of the expression of chlorophyll biosynthesis related genes, especially leaf green. The average length of the Hypocotyl in the hypocotyl extension of the hypocotyl of the.3. mutant pylm was 4.41cm, which was obviously higher than the 2.63cm. paraffin section of the control'CK-51'. The observation showed that the lengthwise elongation of the hypocotyl cells in the hypocotyl cells of the hypocotyl of pylm led to the elongation of the hypocotyl. The liquid chromatography-mass spectrometry (GC-MS) was used in the pylm hypocotyl cells of the hypocotyl. The content of endogenous hormone in hypocotyl of pylm and control'CK-51'was measured by LC-MS, and the content of auxin (IAA) in pylm was 444.50ng/g, higher than that of the 376.32ng/g of the control'CK-51', and the content of gibberellin (GA3) was 469 ng/g, which was far beyond the control'CK-51'173.33 ng/g. The location genetic analysis of.4. yellow mutant gene py1 and py2 showed that the Yellow character of the mutant pylm was controlled by 2 recessive overlapping genes py1 and py2. F2 separation group was constructed with py/m and normal green leaf cabbage DH system'FT'hybridization. 100 plants of wild type and mutant body surface type were selected from F2, and two extremes were constructed. The RNA mixed pool was used for BSR-Seq analysis to predict the location of chromosome related chromosomes in the mutant gene. Using 1520 recessive homozygous yellows in F4 family 1 line, SSR analysis was used to locate the yellow mutation gene py1 between the Inde1zk125 and SSRzk36 markers on the A09 chromosome, and the genetic distance was 0.13cM and 0.2 cM., respectively, and the Chinese cabbage gene. The target area is about 258.3kb and contains 34 genes. Combined with the results of BSR-Seq analysis, it is predicted that BraA09004189 is the candidate gene for the mutation of the yellow mutation gene py1,.BraA09004189 encoding heme oxygenase 1 (Heme oxygenase 1), and participates in the heme catabolism process. After BraA09004189 based full length sequencing and compared with the control'CK-51', two persons are found. There were 1 SNPs differences. The analysis of BraA09004189 expression patterns showed that the expression level in the control'CK-51'was significantly higher than that of pylm. with the 341 recessive homozygous yellows in the F4 family 3 line as the location group, and the mutation gene py2 was located between the A07 chromosome SSRzk116 and the SSRzk133 markers, and the genetic distance was 0.7 cM and 1, respectively. .9 cM. these findings laid the foundation for the final cloning of the yellowing mutant genes py1 and py2, and exploring the molecular mechanism of 2 pairs of gene interactions regulating chlorophyll biosynthesis.
【学位授予单位】:沈阳农业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S634.3
【相似文献】
相关期刊论文 前10条
1 王伟平;朱飞舟;唐俐;陈立云;武小金;;一种水稻全包穗突变体的发现及初步分析[J];中国农学通报;2008年06期
2 罗洪发;查仁明;杨洪海;田永航;薛建蜂;张鹏;;水稻突变体的创制[J];中国农学通报;2011年27期
3 温明星;陈爱大;曲朝喜;;植物突变体创造及研究现状[J];上海农业科技;2012年06期
4 冯永清;邹维华;李丰成;张晶;张会;谢国生;涂媛苑;路铁刚;彭良才;;特异水稻脆茎突变体生物学特性及生物质降解效率的研究[J];中国农业科技导报;2013年03期
5 张洪征;程治军;万建民;;水稻白化突变体研究进展[J];生物技术通报;2013年11期
6 杨春艳;江玲;沈贝贝;冯志明;王新华;万建民;;水稻品种‘南粳35’辐射诱变突变体的鉴定[J];南京农业大学学报;2012年03期
7 张旭;Theo van de Lee;陆维忠;喻大昭;马鸿翔;;小麦赤霉菌绿色荧光蛋白标记突变体的侵染研究[J];中国农业科学;2008年10期
8 郭建秋;雷全奎;杨小兰;马雯;张向召;;植物突变体库的构建及突变体检测研究进展[J];河南农业科学;2010年06期
9 叶俊;吴建国;杜婧;郑希;张志;石春海;;水稻“9311”突变体筛选和突变体库构建[J];作物学报;2006年10期
10 毛毕刚;刘华清;陈建民;陈在杰;彭永宏;王锋;;两个水稻生殖器官突变体的形态特征和遗传分析[J];分子植物育种;2008年02期
相关会议论文 前10条
1 何俊瑜;朱诚;蒋德安;陈静;孙宗修;;水稻突变体对镉的反应及其对镉的积累、分配特性[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
2 林冬;朱诚;胡国成;孙宗修;;镉胁迫下敏感水稻突变体的抗氧化应答[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
3 张亚芳;潘存红;李爱宏;汤雯;武茹;陈宗祥;许爱霞;潘学彪;;提高水稻插入突变体库利用效率的一点尝试[A];江苏省遗传学会第七届代表大会暨学术研讨会论文摘要汇编[C];2006年
4 刘宝花;彭友良;;一个新的基因控制梨孢菌的菌落生长[A];中国植物病理学会2006年学术年会论文集[C];2006年
5 袁亮;郭威;周丹;陈功友;;水稻条斑病菌突变体库的构建以及部分突变体的鉴别[A];第四届中国植物细菌病害学术研讨会论文集[C];2008年
6 佟星;吴宝美;赵波;叶剑;刘红霞;曾潮武;濮绍京;万平;;小豆突变体库构建及突变体筛选[A];中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008)[C];2008年
7 石春海;吴建国;周元飞;;水稻“9311”和“日本晴”植株和稻米突变体库的构建[A];全国生物遗传多样性高峰论坛会刊[C];2012年
8 高荣村;胡胜武;郭学兰;董彩华;刘胜毅;;拟南芥抗菌核病突变体的筛选[A];湖北省遗传学会、江西省遗传学会2006年学术年会暨学术讨论会论文摘要集[C];2006年
9 倪永静;胡新;任德超;李巧云;牛吉山;;国麦301突变体库构建初报[A];中国作物学会2013年学术年会论文摘要集[C];2013年
10 朱传凤;吴家和;何朝族;;一个水稻半矮秆突变体的鉴定及其分子功能研究[A];全国植物分子育种研讨会摘要集[C];2009年
相关重要报纸文章 前2条
1 本报记者 刘洋;寻找“美丽的偶然”[N];东方烟草报;2014年
2 科综;水稻“长生不老”可被制约[N];大众科技报;2008年
相关博士学位论文 前10条
1 武磊;拟南芥CKRW1基因和GFC1基因的功能研究[D];兰州大学;2015年
2 郭斐;利用半理性和理性策略对酶活性及手性选择性的设计[D];浙江大学;2015年
3 师晓;水稻雄性不育突变体gsl5的基因克隆及不育机理研究[D];中国农业科学院;2015年
4 刘峰;烟草激活标签突变体库的构建与分析[D];中国农业科学院;2014年
5 奉保华;水稻斑点叶突变体HM47的基因克隆与功能分析[D];中国农业科学院;2015年
6 徐萍;拟南芥突变体edt1根系发育的分子机制及pqt24-1耐百草枯机制研究[D];中国科学技术大学;2012年
7 钱平平;拟南芥甾醇调控气孔发育和开花的研究[D];兰州大学;2013年
8 王晓强;植物根际促生菌Lyc2和XW10的鉴定及抑菌机理研究[D];山东农业大学;2016年
9 谭炎宁;水稻温敏雄性不育突变体T98S和叶色突变体grc2的鉴定、遗传与利用研究[D];湖南农业大学;2015年
10 高翔;拟南芥cat2突变体中叶片偏下性生长机理的研究[D];武汉大学;2013年
相关硕士学位论文 前10条
1 于洋;水稻护颖外稃化突变体lemma-like sterile lemma(lsl)的遗传分析与基因定位[D];西南大学;2015年
2 王丹霞;水稻yl1黄叶突变体的基因克隆与功能分析[D];中国农业科学院;2015年
3 张龙弟;水稻中一个叶尖枯突变体的图位克隆及LTN2基因的功能分析[D];中国农业科学院;2015年
4 董青;两个水稻黄绿叶基因的图位克隆[D];中国农业科学院;2015年
5 查象敏;玉米抗虫相关突变体的筛选及基因的初步定位[D];中国农业科学院;2015年
6 杜依聪;玉米表皮蜡质突变体glossy6的表型分析与基因克隆[D];中国农业科学院;2015年
7 梅家松;一个水稻黄绿叶突变体的鉴定与基因克隆[D];中国农业科学院;2015年
8 焦禹顺;烟草香气突变体鉴定及挥发性香气成分分析[D];中国农业科学院;2015年
9 熊剑锐;中国兰春剑隆昌素叶色突变体生理生化和光合特性研究[D];西南交通大学;2015年
10 程孝;水稻稃片白化突变体Ds插入位点与标记基因的分子鉴定[D];苏州大学;2015年
,本文编号:2126230
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2126230.html