当前位置:主页 > 硕博论文 > 农业博士论文 >

山地旱作枣园细根分布格局及其土壤水分生态效应

发布时间:2018-07-24 12:52
【摘要】:红枣林是黄土丘陵区退耕还林(草)工程实施以来一种重要的生态经济林,兼具生产和服务功能,截至到2010年,仅黄土高原榆林地区已有红枣林面积达6.67万hm2。土壤水分一直是限制当地红枣产业持续健康发展的关键因子,准确探明红枣林土壤水分动态、耗水特征以及由此产生的水分生态效应对于红枣林管理有重要指导意义。细根是红枣林吸收水分和养分的重要器官,红枣林细根的空间分布特征反映其吸收利用土壤资源的能力,是影响其生产力及稳定性高低的重要因素。红枣林生命周期一般可分为幼年期、初果期、盛果期和衰老期四个年龄阶段,在各个阶段细根具有不同的分布格局,同样对土壤水分亏缺状况的响应程度和反馈方式也存在差异性。针对黄土丘陵区退耕还林(草)工程能否持续发展的迫切需求以及当地干旱缺水的客观事实,以陕北退耕还林后形成的不同树龄旱作红枣林为研究对象,通过定位监测、调查取样、数理统计和室内模拟相结合的方法对红枣林土壤水分动态、红枣林细根空间分布及其与土壤水分关系、红枣林蒸腾及蒸散发规律等进行了研究,并利用HYDRUS-1D模型分析了红枣林土壤水分的参数敏感性和根系经验分布函数的适用性,以提高HYDRUS-1D模型红枣林土壤水分模拟效率和精度。主要取得了以下结论:(1)旱作红枣林土壤水分研究表明:深层土壤含水量随红枣林树龄增加,呈减少趋势。2014平水年红枣林土壤水分随生育期变化整体呈上升趋势;2015干旱年红枣林土壤水分随生育期变化整体呈下降趋势。各树龄红枣林0~0.6 m土层土壤水分波动较大;0.6~1.8 m土层干旱年时形成季节性低湿层(土壤含水量田间持水率60%);1.8~3.0 m土层土壤水分呈常年低湿状态。持续干旱条件下,前期(雨后7天)2龄、6龄红枣林土壤水分损失率显著高于10龄、15龄红枣林土壤水分损失率,后期(雨后18天)2龄、6龄红枣林土壤水分损失率增速缓和,而10龄、15龄红枣林土壤水分损失率呈显著上升趋势。综上建议干旱年时红枣林在开花坐果期和果实膨大期因增加水分管理措施以有效降低枣树自身奢侈性耗水和非生产性耗水,实现红枣林可持续发展。(2)旱作红枣林细根研究表明:随着红枣林树龄增大,细根根长密度增加,比根长减小;2龄枣树细根主要分布于径向1.5 m以内和垂向1.6 m以上,10龄、15龄枣树细根分布超过径向1.5 m和垂向3 m以上,并在株间形成根系高密度区,6龄枣树细根径向分布范围大于2龄,垂向分布与10龄和15龄接近;不同树龄枣林细根根长密度均随土层深度增加而减小,且主要集中在0~0.6 m土层中;随着树龄增加,细根根长密度径向分布无差异(10龄和15龄)。不同树龄枣树径向0.5 m处土壤水分均值和1.5 m处土壤水分均值均存在显著差异(p0.05),且离树干越远,土壤含水量越高。各树龄红枣林细根根长密度(不包括2龄)、比根长均与土壤含水量呈显著线性相关(p0.05),前者斜率随树龄的增大而增大;后者斜率随树龄增加而减少。(3)旱作红枣林蒸腾耗水规律与土壤水分生态效应研究表明:枣树液流速率日间呈单峰型变化趋势,阴天液流速率整体均低于晴天时液流速率,且液流速率呈不规则波动。枣树生育期蒸腾变化大致可分为:萌芽展叶期缓慢增加、开花坐果期迅速增加、果实膨大期高耗水阶段和果实成熟期蒸腾回落阶段;受降雨量影响,平水年生育期红枣林蒸腾耗水量显著高于干旱年蒸腾耗水量(p0.05),表明土壤水分增加促进枣树蒸腾,土壤水分亏缺抑制枣树蒸腾。枣树蒸腾量和株间蒸发量占红枣林总耗水量比例随生育期进行呈不规则变化。平水年生育期内降雨量满足10龄红枣林耗水需求,但干旱年土壤水分亏缺现象严重,并在一定程度上延缓了10龄红枣林生长发育。平水年红枣林生育期耗水量随树龄增加呈上升趋势;干旱年6龄以上红枣林耗水量随树龄增加呈下降趋势。如何将耗水量控制在生育期内多年平均降雨量线(360.1 mm)以下是旱作红枣林健康持续发展的关键。在降雨少、雨量小的萌芽展叶期和开花坐果期,红枣林主要吸收利用中层和深层土壤水(0.6~2.0 m),在降雨充沛的果实膨大期和果实成熟期主要吸收利用根系密集层土壤水(0.2~0.6 m),整个生育期内对表层土壤水(0~0.2m)的使用较少,因此提高0.2~0.6 m土层土壤含水量是当前旱作红枣林水分管理重点。红枣林内外土壤含水量存在显著差异,旱作红枣林在持续干旱情况下主要对1.4 m以下土层土壤水分产生影响。(4)旱作红枣林土壤水分模型模拟结果表明:旱作枣园30~50 cm土层水分易受土壤水分运动参数、气象参数和枣树生长指标影响;表层10 cm处土壤水分主要受表层土壤饱和含水量、孔径指数、土壤饱和导水率和降雨量影响;深层土壤水分(90 cm土层)主要受气温、总光照辐射通量、叶面积指数、根系深度、树高等影响影响。线性根系分布函数可近似反映红枣林根系实际分布情况,且参数简单易获取,具有一定的实用性。HYDRUS-1D模型对6龄、10龄、15龄红枣林各土层含水量模拟值和实测值均方根误差RMSE处于0.05~0.016,相对误差RE均在0.05以下,决定系数R2均在0.6以上,说明Hydrus对不同树龄旱作红枣林土壤水分具有良好的模拟精度。
[Abstract]:Red date forest is an important eco economic forest since the project of returning farmland to forest (grass) in the loess hilly region. By 2010, the area of the red jujube forest in Yulin area of the Loess Plateau has reached 66 thousand and 700 hm2. soil moisture, which has been the key factor restricting the sustainable and healthy development of the local red date industry. The soil water dynamics, water consumption characteristics and the resulting water ecological effect have important guiding significance for the management of the red date forest. The fine root is an important organ for the absorption of water and nutrients in the red date forest. The spatial distribution characteristics of the fine root of the red date forest reflect its ability to absorb and utilize the soil resources, which is important to influence its productivity and stability. The life cycle of the red jujube forest can be divided into four stages in the early stage, in the early fruit period, in the fruit period and in the aging period. There are different distribution patterns in the fine roots of each stage, and the response degree and the feedback way of the soil water deficit are also different. With the objective fact of drought and water shortage in the local area, the soil moisture dynamics of the red date forest, the spatial distribution of the fine root of the red date forest, the relationship with the soil moisture, the red date of the red date forest, and the red date of the red date forest were studied by the method of location monitoring, sampling, mathematical statistics and indoor simulation. The forest transpiration and the law of evapotranspiration were studied, and the HYDRUS-1D model was used to analyze the sensitivity of soil moisture and the applicability of the root experience distribution function in the red date forest to improve the efficiency and accuracy of Soil Moisture Simulation in the HYDRUS-1D model. The following conclusion was obtained: (1) the soil moisture of the dry Chinese jujube forest shows that the depth of soil moisture in the red date forest is deep. The soil moisture content of the layer soil increased with the age of the red date forest. The soil moisture content of the red date forest in.2014 flat was increased with the growth period. The soil moisture in the 2015 dry year red date forest decreased with the growth period. The soil moisture in the 0~0.6 m soil layer of each tree age red jujube forest was greatly fluctuated; the formation season of the 0.6~1.8 m soil layer was formed in the dry year. The low wet layer (soil water content of soil water content was 60%), the soil moisture in 1.8~3.0 m soil layer was in a permanent low humidity condition. Under the continuous drought condition, the soil moisture loss rate of the 6 years old red date forest was significantly higher than that of the 10 years, the 6 years old jujube forest soil water loss rate, the 15 age red date forest soil water loss rate, the later period (18 days after rain), and the soil moisture loss rate of the 6 year old jujube forest The soil moisture loss rate of the 10 years old and 15 years old red date forest increased significantly. In a comprehensive study, it is suggested that the jujube forest in the flowering period and the fruit expansion period can effectively reduce the extravagant water consumption and non productive water consumption of jujube trees in the period of flowering and fruit expansion, and realize the sustainable development of the jujube forest. (2) the fine root research table of the dryland jujube forest With the increase of the age of the red jujube trees, the length density of fine root increases and the root length decreases, and the 2 years old date tree root is mainly distributed within 1.5 m and over 1.6 m, 10 years old, and the 15 years old date tree root is more than 1.5 m and more than 3 m, and the high density zone is formed between the plants. The radial distribution of the fine root of the date tree is larger than the 2 age, and the vertical distribution of the fine root of the jujube tree is more than 2. The cloth was close to 10 and 15 years old. The root length density of the root root of different tree ages decreased with the increase of soil depth, and mainly concentrated in the 0~0.6 m soil layer. With the increase of tree age, the radial distribution of the length density of fine root roots was not different (10 and 15 years old). The mean value of soil moisture and the mean value of soil moisture at 1.5 m at the radial 0.5 m of different tree age trees were significant The difference (P0.05), and the farther from the tree trunk, the higher the soil water content. The length density of the root root of the red date forest of each tree age (not including 2 years old), the root length and soil water content showed a significant linear correlation (P0.05). The slope of the former increased with the age of tree age; the slope of the latter decreased with the age of tree age. (3) the law of water consumption and soil water generation in Dryland jujube forest The study of state effect showed that the flow rate of jujube in day showed a single peak change trend, and the liquid flow rate of the cloudy day was lower than that of the clear day, and the liquid flow rate was irregular. The change of the transpiration of the date tree during the growth period could be roughly divided into the following: the gradual increase of the germination period, the rapid increase of the flowering time, the high water consumption stage and the fruit in the period of the fruit expansion. The evapotranspiration was significantly higher than that of the annual evapotranspiration (P0.05), which indicated that the increase of soil moisture promoted the transpiration of jujube trees, and the soil water deficit inhibited the transpiration of jujube trees. The rainfall in the annual growth period met the demand for water consumption in the 10 year old red jujube forest, but the soil water deficit was serious in the drought year, and to a certain extent delayed the growth of the 10 year old red jujube forest growth. The water consumption of the red date forest in the flat water year increased with the increase of the tree age; the water consumption of the red date forest in the dry year 6 years old increased with the age of the tree. It is a declining trend. How to control the water consumption under the average annual rainfall line (360.1 mm) is the key to the healthy and sustained development of the dryland jujube forest. In the period of low rainfall, small rainfall and flowering and fruit setting, the red date forest mainly absorbs and uses the middle and deep soil water (0.6~2.0 m), in the period of heavy rainfall and the period of fruit expansion. The fruit ripening period mainly absorbs and uses the soil water of the root dense layer (0.2~0.6 m), and the use of surface soil water (0~0.2m) is less in the whole growth period. Therefore, increasing the water content of the soil layer of 0.2~0.6 m soil is the key point of water management in the current Dryland jujube forest. There is a significant difference in soil moisture content inside and outside of the red date forest, and the drought of the red jujube forest in the continuous drought situation. The soil moisture content of soil layer under 1.4 m was affected. (4) the simulation results of soil moisture model in dry Chinese jujube forest showed that water content of 30~50 cm soil layer in dry jujube garden was easily affected by soil moisture movement parameters, meteorological parameters and date tree growth index; soil moisture content in surface 10 cm was mainly saturated with water content of surface soil, pore size index and soil satiety. And the influence of water conductivity and rainfall; deep soil moisture (90 cm soil layer) mainly affected by temperature, total light radiation, leaf area index, root depth, tree high influence. Linear root distribution function can reflect the actual distribution of root system of red date forest, and the parameters are simple and easy to obtain, with a certain practical.HYDRUS-1D model to 6 years, 10 The mean square root error RMSE in the soil water content of 15 years old red date forest is 0.05~0.016, the relative error RE is below 0.05, and the determination coefficient R2 is above 0.6. It shows that Hydrus has good simulation precision on soil moisture of different tree age dry red date forest.
【学位授予单位】:西北农林科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S665.1;S152.7

【相似文献】

相关期刊论文 前10条

1 彭万杰;郭异礁;;虎峰镇土壤水分的动态及其随机模拟[J];安徽农业科学;2009年06期

2 杨涛;宫辉力;李小娟;赵文吉;孟丹;;土壤水分遥感监测研究进展[J];生态学报;2010年22期

3 徐联;申俊初;翟英涛;;影响土壤水分观测精确度的原因及观测注意事项探讨[J];贵州气象;2011年04期

4 高建华;胡振华;;土壤水分基础理论及其应用研究进展[J];亚热带水土保持;2011年03期

5 王安琪;施建成;宫辉力;解超;;降尺度土壤水分信息与植被生长参量的时空关系[J];农业工程学报;2012年S1期

6 胡伟;熊凌云;熊雄;胡新华;;自动土壤水分数据质量控制中的阈值确定[J];气象水文海洋仪器;2012年03期

7 陆枫;胡志洪;胡毅恒;;土壤水分测定方法研究[J];企业导报;2012年23期

8 黄文杰;吕军;翟伶俐;魏晓奕;朱宝;;人工与自动土壤水分观测资料差异探讨[J];中国农学通报;2013年14期

9 冯兆林;陈玲爱;;华北地区土壤水分问题——Ⅰ.土壤水的扩散机制及水在剖面中运动的限制[J];土壤学报;1958年01期

10 花临亭;;辽西砂荒地带土壤水分演变趋势与土地利用问题[J];辽宁农业科学;1963年03期

相关会议论文 前10条

1 王新;;农气报表土壤水分记录审核软件[A];山东气象学会2005年学术交流会优秀论文集[C];2005年

2 薛龙琴;冶林茂;陈海波;;河南省自动土壤水分观测网的建设和应用[A];第26届中国气象学会年会第三届气象综合探测技术研讨会分会场论文集[C];2009年

3 薛龙琴;冶林茂;陈海波;师丽魁;;河南省自动土壤水分资料与人工观测资料对比分析[A];第27届中国气象学会年会现代农业气象防灾减灾与粮食安全分会场论文集[C];2010年

4 除多;次仁多吉;边巴次仁;王彩云;;西藏中部土壤水分遥感监测方法研究[A];第27届中国气象学会年会干旱半干旱区地气相互作用分会场论文集[C];2010年

5 姚付启;蔡焕杰;张振华;;烟台苹果园表层土壤水分与深层土壤水分转换关系研究[A];现代节水高效农业与生态灌区建设(下)[C];2010年

6 石庆兰;王一鸣;冯磊;;土壤水分测量中相位差检测算法的实验与研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年

7 巫丽君;潘建梅;魏爱明;王秀琴;;自动土壤水分观测数据异常原因浅析[A];“推进气象科技创新,,提高防灾减灾和应对气候变化能力”——江苏省气象学会第七届学术交流会论文集[C];2011年

8 杨海鹰;冶林茂;陈海波;;土壤水分研究进展[A];第28届中国气象学会年会——S11气象与现代农业[C];2011年

9 黄奕龙;傅伯杰;陈利顶;;黄土丘陵坡地土壤水分时空变化特征[A];地理教育与学科发展——中国地理学会2002年学术年会论文摘要集[C];2002年

10 陈怀亮;徐祥德;刘玉洁;厉王f;邹春辉;翁永辉;;基于遥感和区域气候模式的土壤水分预报方法研究[A];推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(上册)[C];2004年

相关重要报纸文章 前10条

1 班胜林;山西引进新型土壤水分观测仪[N];中国气象报;2010年

2 记者 王量迪 通讯员 陈瑜;我市建成两个自动土壤水分观测站[N];宁波日报;2010年

3 王一;土壤水分快速测量技术获突破[N];科技日报;2003年

4 记者 宛霞 通讯员 赵志强;中国气象局将加强土壤水分观测[N];中国气象报;2009年

5 记者 王建忠;我国将布设1500套自动土壤水分观测仪[N];中国气象报;2009年

6 记者 田宜龙;我省建成55个土壤水分自动观测站[N];河南日报;2009年

7 实习记者 王宝军 通讯员 赵志强;全国建成76个自动土壤水分观测站[N];中国气象报;2009年

8 张芳 仲维健;江苏启动土壤水分自动观测网建设[N];中国气象报;2009年

9 记者 刘剑英;我省首个自动土壤水分观测站大名投用[N];河北日报;2009年

10 邢开成 胡佳军;河北邯郸首个自动土壤水分观测站投入使用[N];粮油市场报;2009年

相关博士学位论文 前10条

1 王安琪;大尺度被动微波辐射计土壤水分降尺度方法研究[D];首都师范大学;2013年

2 魏新光;黄土丘陵半干旱区山地枣树蒸腾规律及其节水调控策略[D];西北农林科技大学;2015年

3 刘丙霞;黄土区典型灌草植被土壤水分时空分布及其植被承载力研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2015年

4 杨长刚;半干旱雨养区覆盖种植冬麦田土壤水热效应[D];甘肃农业大学;2015年

5 刘艳;喀斯特峰丛洼地不同土地利用方式下表层土壤水分的时空规律研究[D];广西大学;2016年

6 褚楠;基于状态—参数同步估计的土壤水分数据同化研究[D];中国矿业大学;2016年

7 程宏波;覆盖与秸秆还田对旱地小麦土壤水热条件及产量形成的影响[D];甘肃农业大学;2016年

8 李陆生;山地旱作枣园细根分布格局及其土壤水分生态效应[D];西北农林科技大学;2016年

9 王改改;丘陵山地土壤水分时空变化及其模拟[D];西南大学;2009年

10 刘伟;植被覆盖地表极化雷达土壤水分反演与应用研究[D];中国科学院研究生院(遥感应用研究所);2005年

相关硕士学位论文 前10条

1 赵忠凯;土壤水分监控保障系统研究[D];北京邮电大学;2012年

2 苏欢;河南省土壤水分的时空变化特征及其与气象要素的关系[D];南京信息工程大学;2015年

3 丁从慧;土壤水分对夏玉米生理生态特征的影响及动态模拟研究[D];南京信息工程大学;2015年

4 张洛丹;不同植被类型对陡坡地土壤水分循环的影响[D];西北农林科技大学;2015年

5 白盛元;黄土土柱降雨特征与土壤水分入渗过程研究[D];西北农林科技大学;2015年

6 李佳洲;土壤水分对三七生长及有效成分的影响[D];西北农林科技大学;2015年

7 张雪;牧草根系形态特征及土壤水分对修剪高度的响应研究[D];西北农林科技大学;2015年

8 王金锋;不同覆盖方式对渭北苹果园土壤水分、温度及产量品质的影响[D];西北农林科技大学;2015年

9 苏一鸣;黄土高原旱地苹果园起垄覆膜垄沟覆草技术研究[D];西北农林科技大学;2015年

10 上官玉铎;负水头条件下土壤水分入渗和氮素分布规律研究[D];中国农业科学院;2015年



本文编号:2141444

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2141444.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7aca6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com