当前位置:主页 > 硕博论文 > 农业博士论文 >

新疆滴灌小麦带型配置及水氮供给对产量品质形成的影响

发布时间:2018-09-01 16:16
【摘要】:近年来,新疆滴灌小麦发展很快,但相关的理论与技术研究滞后,缺乏配套栽培模式指导,各地滴灌带型不一、适宜的水肥运筹与效应不清,水肥供给仍沿用传统漫灌的时期和用量,滴灌优势未能充分发挥,限制了产量和效率的提升。鉴于此,本研究重点针对滴灌冬小麦高产栽培究竟采用何种带型配置以及适宜的滴灌量和施氮量,在大田条件下,开展了 3项试验:(1)滴灌带配置试验:包括4种带距处理,即3行1带(A处理,带间距45 cm,带间辖3行小麦)、4行1带(B处理,带间距60 cm,带间辖4行小麦)、5行1带(C处理,带间距75 cm,带间辖5行小麦)和6行1带(D处理,带间距90 cm,带间辖6行小麦);(2)滴灌量试验:包括5种不同的滴灌量处理,即 3 150m3/hm2(W1)、3 900m3/hm2(W2)、4 650m3/hm2(W3)、5 400 m3/hm2(W4)和0m3/hm2(CK);(3)施氮量试验:包括6个施氮处理,即0kgN/hm2(N0),94.5kgN/hm2(N1),180kgN/hm2(N2),240kgN/hm2(N3),300kgN/hm2(N4),360kgN/hm2(N5)。重点研究了不同处理对冬小麦冠层结构特征与光合特性、干物质积累与分配、水氮吸收与利用效率及产量与品质性状的影响,旨在为新疆滴灌冬小麦高产高效栽培提供理论依据及技术支撑。主要研究结果如下:1.滴灌带配置对冬小麦产量和水分效率的影响不同带距配置对滴灌麦田土壤含水量影响明显,从冬小麦拔节期至成熟期不同处理0~120 cm 土层的土壤含水量,随着带间距的增加依次降低,即:A处理B处理C处理D处理。120 cm以下土层含水量处理间无差异。随着滴灌带间距的增大,冬小麦的穗数、穗粒数、千粒重、产量及水分利用效率均呈"先增后减"的变化趋势,具体表现为:B处理A处理C处理D处理,B处理产量最高为9 381.01 kg/hm2,较A、C、D处理分别增产4.49%、9.75%和25.81%。2.滴灌量对冬小麦生长发育及产量和品质的影响不同滴灌量处理间比较,冬小麦的LAI和干物质均呈W_3W_4W_2W_1CK的变化规律;随着滴灌量的增加,花后同化物积累量呈增加趋势,花前同化物转运量呈"先增后减"的趋势,但花前转运和花后积累量均以W_3最大。冬小麦最大灌浆速率(V_m)随滴灌量的增加呈"先增后降"的变化趋势,且两年均以W_3处理最大,分别达2.16 g/d和2.59 g/d。随着滴灌量的增加,籽粒容重、蛋白质含量、出粉率、湿面筋含量、面团稳定时间、弱化度及面团拉伸阻力和拉伸比均呈"先增后减"的变化趋势,均以W_3处理最高;而面团吸水率和延伸度则呈"先降后升"的变化趋势,以W_3处理最低;沉降值逐渐增大,面团形成时间逐渐变短。灌溉水利用效率随滴灌量的增加而减小。不同滴灌量处理间比较,W_3处理水分利用效率较高,其中在2013年试验中,水分利用效率最高,为1.18kg/m3;冬小麦的产量呈W_3W_4W_2W_1CK的变化规律,W_3处理的产量与品质协调性好。3.施氮量对滴灌冬小麦冠层特征及光合特性的影响滴灌小麦随着施氮量的增加,株高、各节间长度均呈"先增后减"的趋势;冠层中部和下部的透光率均呈"先降后略升"的变化趋势,以N_3处理透光率最小、光截获率最高;冠层从上到下至倒四叶叶位的叶片温度依次下降,其下降幅度以N_3最大。拔节期后,群体LAI和叶片SPAD值基本呈:N_3N_4N_5N_2N_1N_0的规律。随施氮量的增加,旗叶光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均呈"先增加后降低"的变化特征,且以N_3处理最大;不同施氮量处理间比较,N_3处理的胞间CO_2浓度(Ci)值最小。4.施氮量对滴灌冬小麦干物质积累特征及产量和品质的影响不同施氮量处理比较,冬小麦拔节后各生育时期N_3处理的单株干物质积累量最高;花前同化物转运量、转运率以及对籽粒的贡献率均表现为N_3处理最高;花后同化物对籽粒贡献量也以N_3处理最高,但对籽粒贡献率则呈N_0N_1N_2N_5N_4N_3的变化规律。植株氮素(N)、磷素(P_2O_5)、钾素(K_2O)积累量均表现为:N_3N_4N_5N_2N_1N_0。籽粒容重、出粉率、蛋白质含量、湿面筋含量均随着施氮量的增加呈"先增后减"的变化趋势,沉降值、面团吸水率、面团形成时间、面团稳定时间、拉伸阻力、最大拉伸阻力均表现为:N_3N_4N_5N_2N_1N_0,而面团拉伸面积与面团延伸度则随施氮量的增加而逐渐降低。不同施氮量处理比较,N3处理产量最高,两年平均为8534.21 kg/hm2;氮肥农学利用效率表现为:N_1N_3N_2N_4N_5;N_3处理氮素收获指数最大。综上所述,本试验条件下,滴灌冬小麦获得高产优质高效相协调的最适带距配置为4行1带(带间距60cm,包括4行小麦),适宜滴灌量为4650m3/hm2,适宜施氮量为240kg/hm2,此可作为新疆滴灌冬小麦大面积生产应用的参考指标。
[Abstract]:In recent years, the development of drip irrigation wheat in Xinjiang has been very rapid, but the relevant theoretical and technical research has been lagging behind, lacking the guidance of Matching Cultivation modes, the different types of drip irrigation zones, the unclear operation and effect of suitable water and fertilizer, the time and quantity of traditional flooding irrigation are still used for water and fertilizer supply, and the advantages of drip irrigation have not been brought into full play, thus limiting the increase of yield and efficiency. In this study, three experiments were carried out under the field conditions, focusing on the band type allocation and the appropriate amount of drip irrigation and nitrogen application for High-yielding Cultivation of Winter Wheat under drip irrigation: (1) The experiment included four band spacing treatments, namely, three rows and one band (A treatment, 45 cm band spacing, 3 rows of wheat between bands), four rows and one band (B treatment, 60 cm band spacing, band spacing). There were 4 rows of wheat, 5 rows and 1 band (C treatment, 75 cm interval, 5 rows of wheat) and 6 rows and 1 band (D treatment, 90 cm interval, 6 rows of wheat); (2) Trickle irrigation experiment included 5 different treatments, i.e. 3 150 m3/hm2 (W1), 3 900 m3/hm2 (W2), 4 650 m3/hm2 (W3), 5 400 m3/hm2 (W4) and 0 m3/hm2 (CK 2); (3) Trickle nitrogen application experiment included 6 treatments. The effects of different treatments on canopy structure and photosynthetic characteristics, dry matter accumulation and distribution, water and nitrogen uptake and utilization efficiency, yield and quality of Winter Wheat under drip irrigation in Xinjiang were studied. The main results are as follows: 1. The effect of drip irrigation zone allocation on Yield and water efficiency of winter wheat was obvious. Soil water content of 0-120 cm soil layer was affected by different zone spacing allocation from jointing stage to maturity stage of winter wheat. With the increase of drip irrigation zone spacing, the number of ears, grains per ear, 1000-grain weight, yield and water use efficiency of winter wheat showed a trend of "increase first and then decrease". Specifically, the highest yield of B treatment C treatment D was 9 381.01 kg/h. Compared with A, C and D treatments, the yield of winter wheat increased by 4.49%, 9.75% and 25.81%. 2. The effects of drip irrigation on the growth, yield and quality of winter wheat were compared among different treatments. The LAI and dry matter of winter wheat showed a W_3W_4W_2W_1CK variation pattern; with the increase of drip irrigation, the accumulation of assimilate after anthesis increased, and the transport of assimilate before anthesis showed a "W_3W_4W_2W_1CK" pattern. The maximum grain filling rate (V_m) of winter wheat increased first and then decreased with the increase of drip irrigation, and the maximum grain weight, protein content, flour yield and wet gluten content were 2.16 g/d and 2.59 g/d respectively. The dough stabilization time, weakening degree, dough stretching resistance and stretching ratio all showed the trend of "increasing first and then decreasing", and the water absorption rate and extensibility of the dough showed the trend of "decreasing first and then increasing", while the lowest was in the treatment of W_3; the sedimentation value gradually increased and the dough formation time gradually shortened. Compared with different drip irrigation treatments, W 3 treatment had higher WUE, and the highest WUE was 1.18kg/m3 in the experiment of 2013. The yield of winter wheat showed the variation rule of W3W4W221CK, and the yield and quality of W 3 treatment had good coordination. 3. The effect of Nitrogen Application on the canopy characteristics and photosynthetic characteristics of Winter Wheat under drip irrigation was studied. With the increase of nitrogen application rate, the plant height and internode length of irrigated wheat showed a trend of "increasing first and then decreasing"; the light transmittance of middle and lower canopy showed a trend of "decreasing first and then rising slightly"; the light transmittance of N_3 treatment was the smallest, and the light interception rate was the highest; the leaf temperature of canopy from top to bottom to the fourth leaf position decreased successively, and the decreasing extent of N_3 was the largest. After jointing stage, the LAI and SPAD values of population were basically in the following pattern: N_3N_4N_5N_2N_1N_0. With the increase of nitrogen application rate, the photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of flag leaves were all increased first and then decreased, and the maximum was N_3 treatment, and the intercellular CO_2 concentration (Ci) value of N_3 treatment was the smallest.4. Effects of Nitrogen Application on dry matter accumulation and yield and quality of Winter Wheat under drip irrigation Nitrogen (N), phosphorus (P_2O_5) and potassium (K_2O) accumulation in plants were all shown as follows: N_3N_4N_5N_2N_1N_0. Grain bulk density, flour yield, protein content and wet gluten content increased first and then decreased with the increase of nitrogen application. Water absorption, dough formation time, dough stabilization time, stretching resistance and maximum stretching resistance all showed as follows: N_3N_4N_5N_2N_1N_0, while dough stretching area and dough elongation gradually decreased with the increase of nitrogen application rate. In summary, the optimum band spacing of drip irrigation for winter wheat with high yield, good quality and high efficiency was 4 rows and 1 band (band spacing 60 cm, including 4 rows of wheat), the optimum drip irrigation amount was 4650 m3/hm2, and the optimum nitrogen application rate was 240 kg/hm2, which could be used as a large area of Winter Wheat under drip irrigation in Xinjiang. Reference index for production and application.
【学位授予单位】:中国农业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S512.1;S275.6

【参考文献】

相关期刊论文 前10条

1 张永强;徐文修;李亚杰;张娜;彭姜龙;苏丽丽;胡春辉;;新疆麦后复播大豆适宜滴灌量研究[J];植物营养与肥料学报;2016年04期

2 段丽娜;章建新;薛丽华;孙乾坤;赵连佳;;施氮量对新疆滴灌冬小麦根系生长及产量的影响[J];麦类作物学报;2016年06期

3 商健;张玉梅;林琪;刘义国;;滴灌铺管间距对冬小麦水分动态及耗水特性的影响[J];干旱地区农业研究;2016年03期

4 雷钧杰;张永强;张宏芝;赛力汗·赛;薛丽华;乔旭;于建新;冯宾;梁玉超;王成;陈兴武;;不同滴灌量对冬小麦干物质积累、转运及产量的影响[J];新疆农业科学;2016年04期

5 黄玲;杨文平;胡喜巧;陶烨;姚素梅;欧行奇;;水氮互作对冬小麦耗水特性和氮素利用的影响[J];水土保持学报;2016年02期

6 孙乾坤;章建新;薛丽华;陈兴武;胡锐;;不同滴灌处理对冬小麦根系生长及干物质积累的影响[J];西北农业学报;2016年03期

7 雷钧杰;张永强;赛力汗·赛;薛丽华;乔旭;张宏芝;于建新;冯兵;梁玉超;王成;陈兴武;;施氮量对滴灌冬小麦干物质积累、分配及转运特征的影响[J];新疆农业科学;2016年01期

8 李升东;张卫峰;王法宏;司纪升;孔令安;刘建军;;施氮量对小麦氮素利用的影响[J];麦类作物学报;2016年02期

9 李杰;陈锐;吴杨焕;杨平;崔静;贾彪;郑重;马富裕;;北疆地区滴灌冬小麦农田蒸散特征[J];干旱地区农业研究;2016年01期

10 王雪苗;安进强;雒天峰;李晶;孙克翠;杨晓婷;;不同滴灌带配置方式对玉米干物质的积累及产量影响[J];水土保持研究;2015年06期

相关硕士学位论文 前1条

1 曹敏旭;全生育期增温下施氮量对小麦产量和品质形成的影响及其生理机制[D];南京农业大学;2012年



本文编号:2217712

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2217712.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5512a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com