大豆蚜抗高效氯氟氰菊酯的分子机制及差异蛋白质组学分析
[Abstract]:Soybean aphids (Aphis glycines Matsumura) belong to the family Hemiptera aphidae, which infects soybeans and wild soybeans with pricking mouthparts and can transmit plant viruses, causing significant economic losses. As an effective insecticide, cyhalothrin has been used for a long time to control soybean aphids. The mechanisms of insect resistance include decreased penetration of the epidermis, increased detoxification and metabolism, and decreased target sensitivity. The main mechanisms leading to insect resistance are decreased detoxification and metabolism resistance and target sensitivity. To reveal the resistance mechanism of soybean aphids to high-efficiency cyhalothrin is of practical significance for effective control of soybean aphids and drug resistance control. A high-efficiency cyhalothrin-sensitive strain (CSS) and a resistant strain (CRR) of soybean aphids with the same genetic background were established in the laboratory through multi-generation resistance screening. The cross-resistance spectrum of high-efficiency cyhalothrin and other insecticides was established to provide experimental basis for rational use of pesticides in the field. The synergistic effect of synergists on high-efficiency cyhalothrin was studied by adding enzyme-related inhibitors to the CRR and CSS strains of soybean aphid. Carboxylesterase activity of CRR strain was detected by Q RT-PCR. The results showed that overexpression of carboxylesterase was related to resistance. Increased esterase activity and increased cytochrome P450 activity were the main mechanisms of insect resistance. The expression of cytochrome P450 was analyzed. The increase of its expression level is an important factor for the resistance of soybean aphids to high-efficiency cyhalothrin. Sodium channel is the target of pyrethroid insecticides. Through cloning and sequence analysis of its gene IIS4-S6, the relationship between the genes related to sodium channel and the resistance of soybean aphids to cyhalothrin was discussed. The difference of protein expression between high-performance cyhalothrin resistant strains CSS and CRR of soybean aphids was compared with that of soybean aphids. The results of cross-resistance toxicity test showed that high-performance cyhalothrin resistant strains of soybean aphids had moderate cross-resistance to chlorpyrifos (11.66 times) and low cross-resistance to acetamidophos (11.66 times). Horizontal cross-resistance (8.20 times), moderate cross-resistance (13.83 times) to cis-fenvalerate, moderate cross-resistance (9.64 times) to cyhalothrin, high cross-resistance (37.23 times) to cypermethrin, low cross-resistance (4.81 times) to bifenthrin, and moderate cross-resistance (9.64 times) to methomyl. The results of synergist study showed that the synergistic coefficients of CRR strain of soybean aphid reached 5.85, 23.00 and 40.59 respectively when TPP, DEF and PBO synergists were added to high-efficiency cyhalothrin. The results showed that the synergist had significant effect on the resistance of soybean aphid to cyhalothrin, indicating that the resistance of soybean aphid to cyhalothrin was related to esterase. The esterase kinetics analysis showed that the ratio of esterase activity of resistant strain was 1.405 times higher than that of sensitive strain, and the specific activity of carboxylesterase was significantly different between CSS strain and CR strain (p0.05). The expression of carboxylesterase in soybean aphid was analyzed by Q RT-PCR. CRR strain was 5.87 times higher than CSS strain. The transcription level of carboxylesterase gene m RNA was significantly different between CRR strain and CSS strain. The expression levels of CYP6A13-like, CYP6A2-like, CYP6A14-like and CYtochrome b-c1 genes were significantly increased. Cloning and sequencing of sodium channel genes IIS4, IIS5 and IIS6 showed that the nucleotide sequence contained KDR and super-kdr loci. If the corresponding sites of the sodium channel gene sequence of soybean aphid resistant strain were mutated, the two loci could be explained. The site was correlated with KDR and super-kdr of high-efficiency Cyhalothrin in soybean aphids, which laid a theoretical foundation for studying the mechanism of resistance of sodium channel to high-efficiency Cyhalothrin in soybean aphids. The results showed that 36 protein abundances were more than 2-fold differentially expressed, and 24 proteins were identified effectively, including tubule-binding protein, actin, epidermal protein, fructose-1,6-diphosphate aldolase, enolase, heat shock protein, etc. Some resistance-responsive proteins played an important role in the resistance of soybean aphid to beta-cyhalothrin. The purpose.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S435.651
【相似文献】
相关期刊论文 前10条
1 吴炳芝,孙毅民,张传文;吡虫啉防治大豆蚜虫试验初报[J];黑龙江农业科学;2001年03期
2 苗进,吴孔明,李国勋;大豆蚜的研究进展[J];大豆科学;2005年02期
3 刘振勇,李唯实;大豆蚜虫发生原因及防治措施[J];作物杂志;2005年02期
4 ;黑龙江大豆蚜虫将中等偏重发生[J];农药市场信息;2006年16期
5 刘健;赵奎军;;大豆蚜的生物学防治技术[J];昆虫知识;2007年02期
6 李春红;解春霞;;浅谈大豆蚜防治技术[J];化工之友;2007年17期
7 袁国庆;;大豆蚜发生规律及防治技术[J];农业科技通讯;2008年02期
8 孙艳华;唐成霞;许丽艳;;大豆蚜虫的发生与防治[J];种子世界;2008年06期
9 刘兴龙;李新民;刘春来;王克勤;王爽;刘宇;;大豆蚜研究进展[J];中国农学通报;2009年14期
10 李长锁;于涵;马跃;;大豆蚜发生规律及防治措施[J];现代化农业;2009年10期
相关会议论文 前3条
1 孙雅杰;高月波;;大豆蚜田间种群消长与蚜害防治[A];当代昆虫学研究——中国昆虫学会成立60周年纪念大会暨学术讨论会论文集[C];2004年
2 郭文英;乔格侠;任炳忠;;大豆蚜线粒体基因组序列测定与分析[A];北京昆虫学会通讯(第23期)[C];2011年
3 宋淑云;晋齐鸣;杨敏芝;张伟;李红;沙洪林;;白僵菌对大豆蚜的寄生性研究[A];农业生物灾害预防与控制研究[C];2005年
相关重要报纸文章 前6条
1 商丘市农业局 谢幸华;大豆蚜[N];河南科技报;2005年
2 安徽省植保总站;安徽局部地区大豆蚜虫数量偏多[N];农资导报;2006年
3 刘忠林 记者 孟宝林;科学防治病虫害 大豆水稻是重点[N];牡丹江日报;2007年
4 王春雨 高增双;三江平原罕见旱情该引发何样思考?[N];中国社会报;2007年
5 徐仁吉;夏季农田要注意防治病虫害[N];四平日报;2009年
6 市植检植保站 刘振勇;今年我市农作物主要生物灾害发生趋势分析[N];黑河日报;2010年
相关博士学位论文 前4条
1 王玲;大豆蚜气味结合蛋白的结合特性及组织定位[D];东北农业大学;2014年
2 毕锐;大豆蚜抗高效氯氟氰菊酯的分子机制及差异蛋白质组学分析[D];吉林大学;2016年
3 杨帅;大豆蚜对吡虫啉的抗性监测及抗性机理研究[D];东北农业大学;2012年
4 张莹;大豆蚜的飞行生物学及对寄生蜂的传播潜力[D];中国农业科学院;2009年
相关硕士学位论文 前10条
1 张拓;大豆蚜热休克蛋白70基因的克隆、原核表达与定量分析[D];东北农业大学;2013年
2 刘兴龙;黑龙江大豆蚜对大豆危害及产量损失的研究[D];中国农业科学院;2013年
3 李冉;基于线粒体基因的不同地理种群大豆蚜遗传分化研究[D];东北农业大学;2016年
4 李长锁;哈尔滨地区大豆蚜越冬和迁飞扩散习性的研究[D];东北农业大学;2008年
5 鞠静;利用荧光定量PCR技术分析捕食性天敌对大豆蚜的控害作用[D];东北农业大学;2010年
6 戴长春;大豆蚜(Aphis glycines Matsumura)种群动态及天敌控制作用研究[D];东北农业大学;2005年
7 张俊杰;大豆抗蚜资源筛选及大豆蚜生物型鉴定初探[D];上海交通大学;2013年
8 陈晓慧;大豆蚜对温度和寄主植物的适应性研究[D];东北农业大学;2015年
9 杨帅;大豆蚜(Aphis glycines Matsumura)不同地理种群生态适应性研究[D];东北农业大学;2009年
10 张桦;抗高效氯氟氰菊酯大豆蚜羧酸酯酶生化及分子机制研究[D];吉林大学;2013年
,本文编号:2233544
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2233544.html