V型肌球蛋白在大丽轮枝菌与棉花互作过程中的机制研究
[Abstract]:Objective: Cotton (Gyppium hirsutum) is an important economic crop in the world, and is also the main source of natural fiber. Verticillium Wilt is the main disease of cotton, which seriously affects the yield and quality of cotton and restricts the production of cotton. Verticillium wilt is a kind of soil-borne vascular disease, which can harm more than two hundred kinds of plants, including important cash crop cotton, tomato, lettuce and so on. Verticillium dahliae is the main disease of cotton in China, and its main pathogenic bacteria are the filamentous fungi of soil-borne and semi-living nutrition, mainly colonizing the wood of the plant, and the microsclerotium in its dormant form can survive in the soil for several decades. Therefore, people have not found effective measures to prevent verticillium wilt. In recent years, researchers have made extensive research on the virulence-related genes of the large-li-wheelset by genome, transcriptome, proteome, T-DNA mutant library and gene knockout. in particular, important progress has been made in that research of the infection structure of the large-li wheel branch fungus. There are more than 700 secreted proteins encoded by the genome of the L. rivulus L., but the research on the secreted protein is not very deep, nor the secretion process of the secretory protein is unclear. Only a few have been identified as being related to the pathogenicity of pathogenic bacteria. Due to the diversity of secretory proteins, the research is difficult, but the components related to the secretory pathway are relatively conservative, and the research on the relevant components of the secretory pathway will provide a new target for the prevention and treatment of verticillium wilt of cotton. The exocytosis is a traditional secretory pathway based on vesicle transport in a true nuclear biological cell, and there are some non-traditional secretory pathways. The nutrients and virulence related factors required for the growth of the fungus are transported to a specific location of the cytoplasmic membrane by way of vesicle transport. Vesicles are dependent on motor molecular omyosin Myosin V (Myo V) to provide power and energy for transport along the cell tracks provided by the microfilaments. Myosin V is relatively conserved in filamentous fungi, and has been well studied in the mode fungal yeasts and Aspergillus nidulans, but has not yet been studied in the large-leaf fungus. This study studied the function of V-type Myosin in the pathogenic process of pathogenic bacteria, hoping to provide a new theoretical basis for the prevention and treatment of verticillium wilt of cotton. Methods: (1) The V-type Myosin2 (Myo2) was found to be homologous to the L-type Myosin (Myto2), in which the V-type Myosin protein sequence in Aspergillus nidulatum was sequenced according to the reported model. The phylogenetic tree of V-type Myosin in filamentous fungi was constructed and constructed. (2) The single knockout mutant strain Vddmyo2 was obtained by Agrobacterium-mediated homologous recombination, and the colony morphology, germination rate and growth habit of mycelium were observed. (3) The expression vector of Myo2-GFP was constructed, and the mutant Vddmyo2/ Vd Myo2-GFP was obtained by transforming Vddmyo 2 strain. The space-time dynamic model of Myo2 was observed by rotating disc laser confocal microscope. (4) The process of invasion was observed by scanning electron microscope (SEM). (5) The host, cotton and Arabidopsis were infected by injection method and dip root method, and the difference of pathogenicity between mutant strain and control wild-type strain was analyzed. (6) By using the method of ultracentrengation and concentration, the secretion protein of the large-sized verticillium (mutant and wild-type control) was collected, the protein i TARQ mass spectrum experiment was carried out, the difference protein was screened by using the Saffold 4.0 software, and the difference protein GO analysis was performed by using the Blast2GO software. The functional classification of differential protein and the expression of differential protein were analyzed. Results and Conclusion: (1) The homology of V-type Myo2 with other filamentous fungi was relatively high, and the function was relatively conservative in filamentous fungi. The knockout mutant strain showed serious growth defect, the white mycelium was obviously reduced, the melanin increased, the microsclerotium increased, and the colony growth rate was slowed down. At the same time, the morphology of the conidiospore and the polarity of the mycelium are also seriously affected. The results showed that Myo2 was involved in the development of conidiospore and the process of polarity growth of mycelium. (2) Myo 2-GFP was a punctate in the cytoplasm, and was located at the top of the top of the hypha and co-located with Marker FM4-64 of the top body. The result further showed that Myo2 played an important role in the vesicle transport. (3) The host cotton and Arabidopsis inoculation experiment showed that the pathogenicity of mutant strain decreased significantly. The cotton stalk of the inoculated mutant strain has a relatively light vascular bundle sense, and the pathogenic bacteria can not be isolated in the stem cut-off, which indicates that Myo2 is necessary for the pathogenic force of the large-leaf fungus. The invasion experiment of Arabidopsis proves that the mutant strain can still invade the host cell, and it is estimated that the cause of the disease decrease may not be caused by the obstruction of the infection process, and the main reason may be that the functional defect of the vesicle transport during the secretion of the secreted protein after the loss of Myo2 may be the main reason. (4) Through the protein group data of the secretory protein, we found that the ability of Myo2 to secrete protein was reduced under the same conditions. There were significant differences in the transport and modification of carbohydrate and intracellular transport, secretion and vesicle transport. Therefore, Myo2 is regarded as an important component in the pathway of protein secretion, and it plays an important role in the process of interaction between the host plants and the host plants by modulating the secretion of secreted proteins related to the pathogenesis of the large-li-wheel-branched bacteria.
【学位授予单位】:石河子大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S435.621.2
【相似文献】
相关期刊论文 前10条
1 田李;陈捷胤;陈相永;汪佳妮;戴小枫;;大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析[J];中国农业科学;2011年15期
2 储昭庆,贾军伟,周向军,陈晓亚;大丽轮枝菌分泌糖蛋白的分离及其致萎性研究[J];植物学报;1999年09期
3 张进霞;袁洪水;王士英;韩继刚;朱宝成;;几种氨基酸铜对大丽轮枝菌微菌核形成的抑制作用[J];棉花学报;2006年01期
4 田李;陈捷胤;汪佳妮;王金龙;戴小枫;;高效大丽轮枝菌(Verticillium dahliae)基因敲除体系的构建[J];微生物学报;2011年07期
5 陈天子;袁洪波;杨郁文;刘蔼民;张保龙;;农杆菌介导转化大丽轮枝菌的体系优化[J];棉花学报;2011年06期
6 戴富明;王克荣;陆家云;;湿筛法和蔗糖悬浮法分离土壤中大丽轮枝菌(Verticillium dahliae)效果的比较[J];上海农学院学报;1991年04期
7 肖红利;桂月晶;祁伟彦;陈捷胤;李蕾;徐明;戴小枫;;大丽轮枝菌分泌蛋白提取方法比较[J];中国农业科学;2014年12期
8 王克荣,魏宏根,朱丽萍;大丽轮枝菌混合侵染棉花的研究[J];棉花学报;2001年03期
9 燕海潮;曾来涛;郭晓军;胖铁良;李术娜;朱宝成;;大丽轮枝菌颉颃细菌2-14菌株的鉴定[J];畜牧与饲料科学;2009年04期
10 薛磊;薛泉宏;赵娟;申光辉;唐明;卢建军;;大丽轮枝菌菌体对链霉菌胞外蛋白酶活性及抑菌效果的影响[J];棉花学报;2012年01期
相关会议论文 前10条
1 邓晟;王彩月;张昕;林玲;赵明文;周益军;;大丽轮枝菌的绿色荧光蛋白标记及其根部定殖观察[A];中国植物病理学会2012年学术年会论文集[C];2012年
2 魏锋;余真真;杨家荣;徐向明;胡小平;;土壤中大丽轮枝菌微菌核的检测与定量[A];中国植物病理学会2012年学术年会论文集[C];2012年
3 胡东芳;胡小平;;大丽轮枝菌微菌核萌发的表达谱特征[A];中国植物病理学会2011年学术年会论文集[C];2011年
4 李亚宁;魏艳敏;刘大群;杨文香;张汀;;棉花大丽轮枝菌(Verticillium dahliae)的血清学检测——不同抗原的比较[A];中国植物病理学会2004年学术年会论文集[C];2004年
5 程颖慧;章桂明;王颖;徐浪;;黑白轮枝菌和大丽轮枝菌的基因芯片检测方法[A];中国植物病理学会2008年学术年会论文集[C];2008年
6 陶杰;章桂明;程颖慧;姜子德;;轮枝菌基质辅助激光解吸电离飞行时间质谱分析[A];中国植物病理学会2008年学术年会论文集[C];2008年
7 冯自力;李志芳;师勇强;赵丽红;朱荷琴;李彩红;刘义杰;王玲飞;;分离自棉花的轮枝菌“种”的鉴定[A];中国棉花学会2013年年会论文集[C];2013年
8 张立英;黄国红;刘大群;;棉花大丽轮枝菌RAPD遗传多态性分析[A];中国植物病理学会第七届代表大会暨学术研讨会论文摘要集[C];2002年
9 贾芝琪;李颖章;;NO介导棉花悬浮细胞抗大丽轮枝菌毒素抗性反应[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
10 郑晓华;李颖章;;棉花愈伤组织细胞对大丽轮枝菌毒素(VD-toxin)抗性反应的超微结构观察[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
相关博士学位论文 前10条
1 徐明;高毒力大丽轮枝菌特异分泌蛋白基因功能研究[D];中国农业科学院;2015年
2 张键;向日葵大丽轮枝菌T-DNA突变体库的构建及微菌核形成和致病力相关基因的研究[D];内蒙古农业大学;2016年
3 齐希梁;棉花黄萎病菌高效基因敲除体系的建立与Thit功能的研究[D];石河子大学;2016年
4 Ahmed ABD ELALEEM;大丽轮枝菌插入突变体库的构建及分析[D];西北农林科技大学;2015年
5 何献君;大丽轮枝菌Vd991致病机理研究[D];中国农业大学;2016年
6 冯志迪;V型肌球蛋白在大丽轮枝菌与棉花互作过程中的机制研究[D];石河子大学;2017年
7 肖红利;棉花组织诱导体系中大丽轮枝菌分泌蛋白分析及其致病性研究[D];中国农业科学院;2014年
8 Sami Mohammed Adam Mohammed;大丽轮枝菌毒力基因的筛选与功能鉴定[D];中国农业科学院;2014年
9 刘实忠;利用模式植物拟南芥鉴定和分离大丽轮枝菌外泌毒素中的致萎活性因子[D];中国农业大学;2005年
10 柴友荣;植物抗大丽轮枝菌受体类蛋白基因及甘露糖结合型凝集素基因的克隆与表达[D];西南农业大学;2003年
相关硕士学位论文 前10条
1 王新艳;大丽轮枝菌致病相关突变体的筛选及致病基因VdCYP1功能初步研究[D];中国农业科学院;2015年
2 赵玉兰;利用基因沉默验证大丽轮枝菌糖代谢相关基因的致病力[D];中国农业科学院;2015年
3 师勇强;常用药剂对大丽轮枝菌微菌核的影响[D];宁夏大学;2015年
4 毛建才;聚多糖脱乙酰酶基因家族VdpdaAs在大丽轮枝菌中的功能分析[D];石河子大学;2015年
5 胡惠兰;转GFP基因大丽轮枝菌的构建及侵染棉花过程的研究[D];南京农业大学;2012年
6 王晓楠;绿色荧光蛋白标记的大丽轮枝菌对棉花叶片和单子叶植物的侵染研究[D];南京农业大学;2014年
7 王凯;带有GFP标记的马铃薯大丽轮枝菌的获得及其在马铃薯中侵染过程研究[D];内蒙古农业大学;2016年
8 李宛霖;棉花黄萎病菌致病基因VDAG9119和VdIsc1的功能分析[D];南京农业大学;2015年
9 赵凤轩;绿色荧光蛋白标记的大丽轮枝菌的获得及其在棉花中侵染过程研究[D];中国农业科学院;2010年
10 韩绍辉;农杆菌介导的大丽轮枝菌的遗传转化[D];河北农业大学;2009年
,本文编号:2282384
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2282384.html