当前位置:主页 > 硕博论文 > 农业博士论文 >

红豆树天然居群遗传多样性和交配系统分析

发布时间:2019-05-24 03:03
【摘要】:红豆树(Ormosia hosiei)为国家二级重点保护植物,自然分布于陕西南部和江苏、浙江、江西、福建、湖北、四川、重庆、贵州等省(市),呈星散间断或小块状生于溪边、山谷常绿阔叶林中。红豆树材质优良,有光泽,其纹理美观,是制作工艺雕刻、装饰镶嵌等的上等用材。由于红豆树具有较高的经济和人文价值,其原有天然资源被遭到严重的人为破坏。红豆树现有天然居群较小,自然更新困难,已经处于濒危状态,但目前对其遗传背景了解较少。本研究在已有研究基础上,首先,开发适用于红豆树遗传多样性分析的SSR标记,系统研究不同小流域红豆树天然居群的遗传多样性和遗传分化;其次,通过研究天然居群和个体的交配系统及亲子代遗传差异,阐明红豆树天然居群高遗传多样性的维持机制;最后,开展优树子代苗期测定,研究苗期生长和形态的家系变异及所受遗传控制,揭示子代遗传多样性对子代生长的影响,以期为红豆树遗传保育策略制定及资源有效利用提供理论依据。主要研究结果如下:1、利用SLAF-seq(Specific-locus amplified fragment sequencing)技术对红豆树基因组进行简化测序,获得6 426 462 reads和16 653个多态性SLAF标签,含有17 868个SSR位点,平均每6.98kb分布1个SSR位点。不同核苷酸重复类型的基元类型数量及SSR位点数量间差异较大,除单核苷酸外,二、三核苷酸重复类型数量较多,分别占总SSR位点的17.15%和15.02%,其中AT/TA和GAA/TTC基元重复数量最多,分别为1 090个(43.1%)和349个(15.2%)。在获取的2 817对引物中,以二、三核苷酸类型最多,两者所占比例高达94.8%。从设计合成的70对SSR引物中,筛选出12对多态性高、特异性好的SSR引物,多态位点百分率为17.14%。这为红豆树遗传多样性、交配系统分析及分子标记辅助育种奠定了基础。2、利用开发的SSR引物对分布在江西省资溪县泸溪河(LXH)、福建省柘荣县茜洋溪(XYX)和浙江省龙泉市瓯江上游(OJ)3个小流域红豆树天然居群的遗传分析发现,不同小流域红豆树天然居群皆维持较高遗传多样性水平(HE0.720)。不同流域红豆树天然居群遗传多样性的高低顺序:OJ(HE=0.835)、XYX(HE=0.829)、LXH(HE=0.796);西溪支流内中游的(福建富溪)FJFX居群遗传多样性明显高于其上游福建东源(FJDY)和下游福建宅中居群(FJZZ)。遗传变异主要存在于流域内(92.73%)和居群内(89.66%),流域间或流域内居群间的遗传分化均属于中等程度(Fst分别为0.070和0.103)。基于遗传距离的聚类分析和Structure分组分析,均将红豆树3个小流域的9个天然居群归为2大群组,其中LXH和XYX流域归为第一群组,而OJ流域为第二群组。遗传距离和地理距离之间无显著线性相关。据此,推测红豆树片段化时间较短,未对其遗传多样性产生较大影响。3、在对红豆树天然居群遗传多样性分析基础上,选取江西马头山(JXMTS)、浙江八都(ZJBD)和浙江锦溪-1(ZJJX-1)3个典型的天然居群,进一步对其交配系统进行分析,结果表明,成株居群和子代群体均保持了较高的遗传多样性,不同居群及其子代的遗传多样性略有差异,其中JXMTS和ZJBD居群遗传多样性高于ZJJX-1居群。子代群体固定指数(F)均明显低于成株居群,说明子代群体中实际观察到的纯合单株所占比例要高于亲本。红豆树的异交率较高(tm=0.884),存在一定程度的双亲近交现象(tm ts=0.078),且花粉供体数目较少(2.096)。JXMTS(tm=1.000)的异交率高于ZJBD居群(tm=0.824),而大的居群有效花粉供体数相对较少。取样8个家系的多位点异交率(tm)变化范围为0.772~1.000,绝大多数子代家系均存在一定程度的双亲近交现象,个别家系有少量自交。这些结果说明创造条件扩大居群规模对红豆树天然居群的就地保护非常重要,还应防止边缘或孤立个体的人为破坏而导致基因流受阻。4、利用在浙、闽、赣和川4省初选的76株优树,开展红豆树优树种子及其苗期生长遗传变异研究,结果表明,红豆树优树种子性状(种宽、种厚等)及其子代生长(苗高和地径)、叶片形态和根系特征等性状大多具有显著或极显著的家系效应,高生长节律参数在家系间均达到极显著水平。相关分析结果显示,苗高、地径与种厚、百粒重均呈极显著正相关,较之于苗高,地径与叶片、根系特征等性状的相关关系更强(r=0.349~0.608);苗高与线性生长始期、各生长参数(最大线性生长速度、线性生长速度和线性生长量)均呈极显著正相关,而与线性生长期呈微弱负相关,说明相对较晚进入速生期的红豆树家系,凭借较快的生长速率更能优先占据生长空间而获得较高的生长量。各生长性状家系遗传力水平较高,受中等或较强的遗传控制(hf2=0.479~0.854),并以苗高作为主要性状,同时兼顾地径,从76个优树家系中初选出20个优良家系。总的来说,种子性状、叶片及生长节律参数等对苗木生长影响显著,为今后红豆树优良家系选择提供参考。5、选择26个代表性红豆树优树自由授粉子代群体,进行子代群体遗传多样性评价及其对苗木生长影响的研究,分析发现,红豆树优树子代群体亦具有较高的遗传多样性,有效等位基因数为7.766个,观测杂合度(HO)和期望杂合度(HE)分别为0.469和0.865。除SSR8外,其余位点的观测杂合度均小于期望杂合度,表明子代群体绝大多数位点处于杂合子缺失状态。不同家系红豆树的遗传多样性有所差异,12号家系的遗传多样性水平最高,8号家系最低。通过比较发现,居群子代的遗传多样性显著或极显著高于孤立木子代。F统计量和分子方差分析(AMOVA)均表明,红豆树优树子代群体的遗传变异主要存在于家系内,家系间的遗传分化较小。相关性分析发现,子代遗传多样性参数与种子性状、子代播种后7个月的苗高呈显著正相关(r=0.378~0.527)。说明较大的红豆树天然居群在子代遗传多样性维系中起了非常重要作用,子代遗传多样性显著影响苗木后期生长,这为后期优良家系选择提供了理论依据。
[Abstract]:Ormosia hosiei is a national secondary key protection plant, which is naturally distributed in the south of Shaanxi and the provinces (cities) of Jiangsu, Zhejiang, Jiangxi, Fujian, Hubei, Sichuan, Chongqing, Guizhou and other provinces (cities). The red bean tree has the advantages of excellent material and luster, and the texture is beautiful, and the red bean tree has the advantages of manufacturing process engraving, decoration and inlaying, and the like. Because the red bean tree has higher economic and cultural value, the original natural resources of the red bean tree are destroyed artificially. The existing natural living group of the red bean tree is small, the natural updating is difficult, and the red bean tree is in an endangered state, but the genetic background of the red bean tree is less. Based on the existing research, the genetic diversity and genetic differentiation of the natural population of the red bean trees in different small watersheds were studied by using SSR markers suitable for the analysis of the genetic diversity of the red bean trees, and secondly, By studying the genetic difference of the mating system and the progeny of the natural population and the individual, the maintenance mechanism of the high genetic diversity of the natural habitat of the red bean tree was clarified, and the family variation and the genetic control of the growth and the morphology in the seedling stage were studied. The influence of the genetic diversity of the offspring on the growth of the offspring is revealed, with a view to providing the theoretical basis for the development of the genetic conservation strategy and the effective utilization of the resources of the red bean trees. The main results of this study were as follows:1. Using the SLAF-seq (Specific-location) technique to simplify the sequencing of the genome of the red bean trees to obtain the 6426 462-reads and 16,653 polymorphic SLAF tags, including 17,868 SSR sites, with an average of 1 SSR locus per 6.98 kb. The number of the primitive types and the number of SSR loci of the different types of nucleonic acid repeats is large, and the number of the repeat types of the two and the three-core acid is more than that of the single-core acid, which accounts for 17.15% and 15.02% of the total SSR locus, respectively, wherein the repeat number of the AT/ TA and the GAA/ TTC elements is the most, 1,090 (43.1 per cent) and 349 (15.2 per cent), respectively. Among the 2,817 pairs of primers, the most of the two, three, and third, the proportion of the two were as high as 94.8%. 12 pairs of SSR primers with high polymorphism and good specificity were selected from 70 SSR primers which were designed and synthesized. The percentage of polymorphic sites was 17.14%. This provides a basis for the genetic diversity, mating system analysis and molecular marker-assisted breeding of the red bean tree. The genetic analysis of the natural population of the red bean trees in the three small watershed of the three small watershed of the Qiangxi (XYX) and the upstream (OJ) of the Longquan city of the province of Fujian Province found that the natural population of the red beans in the different small watershed maintained a higher level of genetic diversity (HE0.720). The genetic diversity of the natural populations of the red beans in different watersheds is: OJ (HE = 0.835), XYX (HE = 0.829), LXH (HE = 0.796); the genetic diversity of the FJFX population in the middle reaches of the Xixi substream is significantly higher than that of the upstream Fujian Dongyuan (FJDY) and the downstream Fujian house (FJZZ). The genetic variation is mainly in the basin (92.73%) and within the population (89.66%), and the genetic differentiation among the interbasin or interbasin populations is of moderate degree (Fst is 0.070 and 0.103, respectively). Based on the cluster analysis and the structure analysis of the genetic distance, the nine natural groups in the 3 small watershed of the red bean tree are classified as two groups, and the LXH and XYX basins are classified as the first group, and the OJ drainage area is the second group. There was no significant linear correlation between the genetic distance and the geographic distance. Based on the analysis of the genetic diversity of the natural population of the red beans, the three typical natural populations of the Maheadshan (JXMTS) of Jiangxi, eight of Zhejiang (ZJBD) and Jinxi-1 (ZJJX-1) of Zhejiang Province were selected. The results showed that the genetic diversity of JXMTS and ZJBD populations was higher than that of ZJJX-1 populations. The fixed index (F) of the progeny population was significantly lower than that of the parent population, indicating that the proportion of the homozygous single plant observed in the progeny population was higher than that of the parent. The heterogenic rate of red bean trees was higher (tm = 0.884), and there was a certain degree of parental close-crossing (tm ts = 0.078), and the number of pollen donors was less (2.096). The cross-crossing rate of JXMTS (tm = 1.000) was higher than that of the ZJBD population (tm = 0.824), while the number of effective pollen donors in large populations was relatively small. The variation range of the multi-locus of 8 families was 0.772 ~ 1.000, and the most of the children's families had a certain degree of close-crossing, and the individual families had a small number of selfing. These results indicate that the condition of creating conditions to enlarge the population size is very important to the local protection of the natural population of the red bean trees, and the human-made destruction of the edge or the isolated individual should also be prevented, and the flow of the gene can be prevented. The results of the study on the genetic variation of the seed and its seedling at the seedling stage show that the characteristics of the sub-traits (seed width, seed thickness, etc.) and its progeny growth (high seedling height and ground diameter), leaf shape and root system characteristics of the superior tree species have significant or very significant family effects. The high growth rhythm parameters reached a very significant level at home. The results of correlation analysis showed that the seedling height, the ground diameter and the seed thickness and the weight average of the seed were positively correlated, and the correlation between the ground diameter and the leaf and root system characteristics was stronger (r = 0.349-0.608), and the growth parameters (maximum linear growth rate) were higher in the seedling height and the linear growth stage, and the growth parameters (maximum linear growth rate). The linear growth rate and the linear growth rate were positively correlated with a slight negative correlation with the linear growth phase, indicating that the red bean tree family was relatively late to enter the fast growing stage, and the growth space was more preferentially occupied by the faster growth rate to obtain higher growth. The heritability of each growth trait family was high, and it was controlled by medium or strong genetic control (hf2 = 0.479-0.854), and with high seedling height as the main character, and taking into account the ground diameter,20 excellent families were selected from the 76 excellent tree families. in general, that effect of the seed character, the leaf and the growth rhythm parameter on the growth of the nursery stock is significant, provide reference for the good family selection of the red bean tree in the future, and 5, select the free-pollinated progeny group of the 26 representative red bean trees, The genetic diversity of the progeny population and its effect on the growth of the nursery stock were studied. The results showed that there were also high genetic diversity, the number of effective alleles was 7.766, the observed heterozygosity (HO) and the expected heterozygosity (HE) were 0.469 and 0.865, respectively. In addition to the SSR8, the observed heterozygosity of the remaining sites was less than the expected heterozygosity, indicating that the majority of the sites of the progeny population were in the heterozygote-deleted state. The genetic diversity of the red bean trees in different families is different, and the genetic diversity of the family in No.12 family is the highest and the family of the No.8 families is the lowest. It was found that the genetic diversity of the children in the population group was significantly or significantly higher than that of the isolated wood. F-statistic and variance analysis of variance (AMOVA) showed that the genetic variation of the progenies of the superior tree of the red bean was mainly found in the family, and the genetic differentiation among the families was small. The correlation analysis showed that the genetic diversity of the progeny was positively correlated with the seed character and the seedling height of 7 months after the seed sowing (r = 0.378-0.527). It is indicated that the natural population of red bean trees plays an important role in the maintenance of the genetic diversity of the progeny, and the genetic diversity of the progeny significantly influences the later growth of the nursery stock, which provides a theoretical basis for the good family selection in the later stage.
【学位授予单位】:中国林业科学研究院
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S792.99

【相似文献】

相关期刊论文 前10条

1 张惠娟,贾昆峰;林木遗传多样性与现代林业[J];内蒙古科技与经济;2000年03期

2 尚占环,姚爱兴;生物遗传多样性研究方法及其保护措施[J];宁夏农学院学报;2002年01期

3 蒋楠;作物遗传多样性的保护和持续利用[J];四川教育学院学报;2003年09期

4 张静;;作物遗传多样性的保护和持续利用[J];神州;2013年17期

5 ;《遗传多样性研究的原理与方法》评介[J];动物学研究;2000年02期

6 解新明,云锦凤;植物遗传多样性及其检测方法[J];中国草地;2000年06期

7 胡守荣,夏铭,郭长英,陆晓春;林木遗传多样性研究方法概况[J];东北林业大学学报;2001年03期

8 陈宽维;“我国家禽遗传多样性研究”前景诱人[J];中国家禽;2003年02期

9 朱秀志;彭正松;;四川珍稀林木资源及其遗传多样性研究状况[J];西部林业科学;2006年04期

10 高秀琴;兰进好;穆平;林琪;;小麦遗传多样性研究进展[J];山东农业科学;2007年03期

相关会议论文 前10条

1 胡志昂;;对我国遗传多样性研究的几点意见[A];生物多样性研究进展——首届全国生物多样性保护与持续利用研讨会论文集[C];1994年

2 何文珊;陆键键;;分子生物学技术在遗传多样性研究中的应用[A];生物多样性与人类未来——第二届全国生物多样性保护与持续利用研讨会论文集[C];1996年

3 刘娟;李贝宁;刘春生;周应群;;栽培对道地甘草遗传多样性的影响研究[A];中华中医药学会第十届中药鉴定学术会议暨WHO中药材鉴定方法和技术研讨会论文集[C];2010年

4 沈裕琥;王海庆;黄相国;葛菊梅;张怀刚;;作物品种间遗传多样性的研究进展[A];21世纪作物科技与生产发展学术讨论会论文集[C];2002年

5 沈裕琥;王海庆;黄相国;葛菊梅;张怀刚;;作物品种间遗传多样性的研究进展[A];中国科学院西北高原生物研究会论文集[C];2002年

6 沙伟;林琳;郑云梅;;小仙鹤藓遗传多样性分析[A];中国植物学会七十五周年年会论文摘要汇编(1933-2008)[C];2008年

7 ;“全国生物遗传多样性高峰论坛”日程安排[A];全国生物遗传多样性高峰论坛会刊[C];2012年

8 芒来;杨虹;;蒙古马遗传多样性研究进展[A];遗传学进步与人口健康高峰论坛论文集[C];2007年

9 毛培胜;王新国;黄莺;;分子标记技术在牧草遗传多样性研究中的应用[A];2009中国草原发展论坛论文集[C];2009年

10 周秋白;郑宇;周莉;桂建芳;;鄱阳湖鲫鱼遗传多样性分析[A];中国鱼类学会2008学术研讨会论文摘要汇编[C];2008年

相关重要报纸文章 前10条

1 胡云章;绚丽的民族文化 丰富的遗传多样性[N];大众科技报;2008年

2 刘霞;人类语言源于非洲再添新证据[N];科技日报;2011年

3 卞晨光;保护家畜遗传多样性刻不容缓[N];中国畜牧兽医报;2012年

4 本报记者 游雪晴;中国的人类遗传多样性研究成果丰硕[N];科技日报;2001年

5 记者 胡德荣;亚洲人群遗传多样性研究获最新成果[N];健康报;2009年

6 张桂香;中国地方水牛的遗传多样性[N];农民日报;2004年

7 李倩;不同民族永生细胞库建设取得进展[N];大众科技报;2007年

8 李倩;我国永生细胞库初具规模[N];人民日报;2007年

9 记者 耀辉;云南5成果喜获国家科技奖[N];云南经济日报;2006年

10 肖力伟 译;中国栽培的大豆品种 遗传多样性变异丰富[N];农民日报;2011年

相关博士学位论文 前10条

1 李峰卿;红豆树天然居群遗传多样性和交配系统分析[D];中国林业科学研究院;2017年

2 周芸芸;神农架川金丝猴的遗传多样性及保护研究[D];中央民族大学;2015年

3 彭亮;丹参种质资源及其遗传多样性研究[D];西北农林科技大学;2015年

4 刘海龙;大叶榉遗传多样性与离体保存研究[D];中南林业科技大学;2015年

5 狄晓艳;油松遗传多样性与光合生理生态特性研究[D];山西大学;2014年

6 陈雪平;茄子遗传多样性研究与遗传连锁图谱构建[D];河北农业大学;2015年

7 蒋冬月;柳树优良无性系遗传多样性及其重要性状的关联分析[D];中国林业科学研究院;2015年

8 杨新笋;基于SSR、SNP和形态学标记的甘薯种质资源遗传多样性研究[D];中国农业大学;2016年

9 徐群;我国籼稻品种遗传结构与多样性的SNP分析[D];中国农业科学院;2016年

10 王涛;番茄遗传多样性及几个重要农艺性状的关联分析[D];沈阳农业大学;2016年

相关硕士学位论文 前10条

1 王琳;基于ISSR的连翘遗传多样性研究[D];山西农业大学;2015年

2 陈伟帅;小麦抗病遗传多样性对条锈病的调控效应[D];中国农业科学院;2015年

3 王若丁;西藏工布乌头天然群体的遗传多样性分析[D];东北林业大学;2015年

4 邓宏中;基于SSR标记的中国水稻地方品种与选育品种遗传多样性研究[D];中国农业科学院;2015年

5 刘丽;西藏墨脱地区野生草莓的遗传多样性分析[D];东北林业大学;2015年

6 张佳佳;沈阳森林动物园丹顶鹤(Grus japonensis)遗传多样性分析和亲缘关系研究[D];东北林业大学;2015年

7 梅芳芳;三种水生被子植物在中国六大湖泊的遗传多样性[D];华中师范大学;2015年

8 刘鹏;野豌豆属牧草的遗传多样性研究[D];兰州大学;2015年

9 胡益波;枳遗传多样性及其与红橘杂交后代遗传研究[D];华中农业大学;2015年

10 马旭丹;水稻部分骨干亲本的指纹图谱构建和遗传多样性分析[D];华中农业大学;2015年



本文编号:2484491

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2484491.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ad4cc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com