不同Bt蛋白对三种天敌的安全性评价及天敌人工饲料配方的改进
发布时间:2021-12-18 15:41
为防治经济作物害虫,转基因作物在全世界范围内得以广泛种植。由于生物多样性与环境安全和农业的可持续发展同等重要,转基因作物对生态系统内生物多样性的安全问题引起了广泛关注。生物多样性在维持生态系统平衡中扮演着重要角色。为避免对生态系统造成不可估量的影响,转基因作物对生物多样性影响的评估很有必要。人工饲料是生物安全评价的一种有效方法。因此用Bt毒素掺入人工饲料的方法对关键性捕食昆虫的生物安全进行评价。另外,农业可持续发展和温室生产技术促使生物防治在IPM中的地位日益升高。人工饲料可以对捕食性昆虫快速有效的大规模饲养,是满足生物防治应用要求的关键因子。提高转基因作物及其产品的安全性和生物防治在转基因作物间的长期有效性是目前研究的焦点。目前的研究中,大草蛉、龟纹瓢虫、异色瓢虫的人工饲料得以开发以及在转Bt基因作物的生物安全性评价中得以应用,人工饲料同样应用于关键性捕食昆虫的大规模饲养技术以促进生物防治的大量应用。1.开发出大草蛉的4种人工饲料,并用于草蛉的幼期发育研究。大草蛉取食其中2种饲料的存活率超过80%。随后利用人工饲料评价了8种Bt蛋白(CrylAb, CrylAc, CrylCa, C...
【文章来源】:中国农业科学院北京市
【文章页数】:146 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
ABBREVIATION
CHAPTERⅠ Introduction
1.1 Insect and human being
1.2 Insect as noxious pests or natural enemies of pests
1.3 Biodiversity and environment
1.3.1 Biological control agents
1.3.1.1 Chrysopids
1.3.1.2 Predatory Coccinelids
1.4 Predators and their artificial diet
1.4.1 Nutritional requirements and artificial diet development of Chrysopids and Coccinellids
1.4.1.1 Factitious prey
1.4.1.2 Artificial diet
1.5. Insect Resistant genetically modified crops
1.6 Bacillus thuringiensis
1.6.1 Bt toxins; a diverse and large family of insecticidal proteins
1.6.2 Mode ofaction of Bt toxins
1.7 Global adoption of genetically engineered crops
1.8 Development and adoption of transgenic crops in China
1.9 Insect resistant genetically engineered crops and non-target organisms
1.10 Biological control of insect pests
1.11 Types of Biological control
1.12 Trends and challenges in mass rearing of BCAs for commercial augmentative biological control:the current state of play
CHAPTER Ⅱ Development of artificial diet for Chrysopa pallens to improve rearing techniques
2.1 Introduction
2.2 Material and methods
2.2.1. Insects
2.3 Development of Artificial Diet for C. Pallens
2.3.1 Artificial diet for immature C. pallens
2.3.2 Artificial diet for C.pallens Adult
2.3.2.1 Artificial Diet 1
2.3.2.2 Artificial diet 2
2.4 Artificial diets fitness Bioassay
2.5 Results
2.5.1 Fitness suitability of artificial diets
2.5.2 Rearing of C. pallens adult on artificial diet
2.6 Discussion
Chapter Ⅲ Dietary exposure test design to study the impact of Bt proteins on immature C.pallens
3.1 Introduction
3.1.1 Insect culture
3.1.2 Insecticidal compounds
3.1.3 ELISA Kits
3.1.4 Preparation of Wash buffer and Extraction buffer
3.1.5 Dilution of Bt proteins and preparation of standard solution
3.1.6 Determination of LC_(50) and bioactivity of Bt proteins
3.1.7 Artificial diet for H. armigera
3.2 Artificial diet fitness bioassay
3.3 Validity of dietary exposure test design
3.4 Toxicity of Cry proteins to immature C. pallens
3.5 Stability of Cry proteins in the artificial diet
3.6 Bt protein bioactivity verification bioassay
3.7 Uptake of Cry proteins by C. pallens larvae
3.8 Statistical analyses
3.9 Result
3.9.1 LC_(50) of Bt proteins
3.9.2. Artificial diet fitness bioassay
3.9.3 Validity of dietary exposure test
3.9.4. Toxic impact of Cry proteins on the survival and development of immature C. pallens
3.9.5 Ingestion of Cry proteins by C. pallens
3.9.6 Stability of Bt proteins in artificial diet
3.9.7 Bio-activity of Bt proteins in artificial diets
3.10 Discussion
Chapter Ⅳ Environmental risk assessment of vegetative insecticidal protein on great lacewing Chrysopa pallens
4.1 Introduction
4.2 Materials and methods
4.2.1 Insect culture
4.2.2 Insecticidal compounds
4.2.3 ELISA Kits
4.2.4 Bioactivity of Bt proteins
4.3 Toxicity bioassay on C. pallens larvae
4.4 Toxicity evaluation bioassay on C. pallens Adult
4.5 Stability and bioactivity of Vip3Aa in artificial diet
4.5.1 ELISA analyses
4.5.2 Susceptible-insect bioassay
4.6 Data analyses
4.7 Results
4.7.1 Toxic impact of Vip3Aa on immature C. pallens
4.7.2 Effects of Vip3Aa on life-table parameters of adult C. pallens
4.7.3 Ingestion of Bt proteins by C. pallens
4.7.4 Stability of Vip3Aa in artificial diet
4.7.5 Bioactivity verification of Vip3Aa
4.8 Discussion
Chapter Ⅴ Dietary exposure pathway proves, that Cry1Ac, Cry1F and Cry2Ab expressing insect resistantgenetically engineered crops do not afflict adult lacewing Chrysopa pallens
5.1 Introduction
5.2 Materials and methods
5.2.1 Arthropod culture
5.2.2 Insecticidal compounds
5.2.3 Artificial diet for adult C. pallens
5.2.4 Cry proteins exposure to C. pallens adults
5.2.5 Intake of Cry1Ac, Cry1F and cry2Ab by adult Chrysopa pallens
5.2.6 Stability of Cry proteins in artificial diet
5.2.7 Bioactivity verification bioassay
5.2.8 Data analyses
5.3. Results
5.3.1 Effects of Cry1Ac, Cry1F and Cry2Ab on life-table parameters of adult C. pallens
5.3.2 Intake of Cry proteins by C. pallens
5.3.3 Stability of Cry proteins in artificial diet
5.3.4 Bioactivity of Cry proteins in artificial diet
5.4. Discussion
Chapter Ⅵ Artificial diet Development for Propylea japonica and Harmonia axyridis and its effects on reproductiveperformance of emerged-adults
6.1 Introduction
6.2 Materials and methods
6.2.1. Insects
6.2.2. Artificial diet
6.2.3 Immature survival and development
6.2.4 Survival and reproductive performance of adults
6.2.5 Comparison of artificial diets with pea aphid and E. kuehniella eggs
6.2.6 Statistical analysis
6.3. Results
6.3.1. Immature survival and development
6.3.2 Adult survival and reproductive performance on different diets
6.4. Discussion
Chapter Ⅶ Biosafety evaluation of Bt proteins on Immature Harmonia axyridis and Propylea japonica
7.1 Introduction
7.2 Materials and Methods
7.2.1 Insects
7.2.2 Insecticidal compounds
7.2.3 Artificial diet
7.3 Validity of dietary exposure Bioassay
7.4 Dietary exposure test
7.5 Vip3Aa, Cry1Ca and Cry1F concentrations in adult emerged from larvae fed artificial diet
7.6 Stability and Bioactivity of Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.6.1 ELISA Analyses
7.6.2. Sensitive-insect bioassay
7.7 Data analyses
7.8 Result
7.8.1 Validation of dietary test design
7.8.2 Toxic impact of Vip3Aa, Cry1Ca and Cry1Fa on Harmonia axyridis and P. japonica
7.8.3 Stability and bioactivity confirmation test for Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.8.4 Vip3Aa, Cry1Ca and Cry1F concentration measurements in emerged adults
7.8.5 Bt protein bioactivity verification bioassay
7.9 Discussion
CONCLUSION
References
Acknowledgement
Curriculum Vitae
【参考文献】:
期刊论文
[1]大草蛉幼虫对烟粉虱的捕食功能反应及捕食行为观察[J]. 刘爽,王甦,刘佰明,周长青,张帆. 中国农业科学. 2011(06)
[2]大草蛉对桃蚜和夹竹桃蚜的捕食作用研究[J]. 赵琴,陈婧,刘凤想,肖文芳,彭宇. 环境昆虫学报. 2008(03)
[3]龟纹瓢虫生物生态学特性及饲养利用研究进展[J]. 张世泽,仵均祥,张强,姜军侠,许向利,陈继安. 干旱地区农业研究. 2004(04)
[4]有益瓢虫的生防利用研究概述[J]. 荆英,黄建,黄蓬英. 山西农业大学学报(自然科学版). 2002(04)
[5]苏云金杆菌vip3 A基因的克隆、表达及杀虫活性分析[J]. 陈建武,唐丽霞,汤慕瑾,师永霞,庞义. 生物工程学报. 2002(06)
[6]三种饲料对异色瓢虫和龟纹瓢虫的饲喂效果[J]. 郭建英,万方浩. 中国生物防治. 2001(03)
[7]中国食蚧瓢虫名录[J]. 曾涛,庞虹. 昆虫天敌. 2000(02)
[8]海南岛瓢虫名录[J]. 彭正强,庞虹,任顺祥,金启安. 昆虫天敌. 1997(03)
[9]异色瓢虫生物学特性观察[J]. 何继龙,马恩沛,沈允昌,陈文龙,孙兴全. 上海农学院学报. 1994(02)
[10]棉铃虫人工饲料的研究[J]. 卓乐姒,黄月兰,杨家荣. 昆虫学报. 1981(01)
本文编号:3542697
【文章来源】:中国农业科学院北京市
【文章页数】:146 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
ABBREVIATION
CHAPTERⅠ Introduction
1.1 Insect and human being
1.2 Insect as noxious pests or natural enemies of pests
1.3 Biodiversity and environment
1.3.1 Biological control agents
1.3.1.1 Chrysopids
1.3.1.2 Predatory Coccinelids
1.4 Predators and their artificial diet
1.4.1 Nutritional requirements and artificial diet development of Chrysopids and Coccinellids
1.4.1.1 Factitious prey
1.4.1.2 Artificial diet
1.5. Insect Resistant genetically modified crops
1.6 Bacillus thuringiensis
1.6.1 Bt toxins; a diverse and large family of insecticidal proteins
1.6.2 Mode ofaction of Bt toxins
1.7 Global adoption of genetically engineered crops
1.8 Development and adoption of transgenic crops in China
1.9 Insect resistant genetically engineered crops and non-target organisms
1.10 Biological control of insect pests
1.11 Types of Biological control
1.12 Trends and challenges in mass rearing of BCAs for commercial augmentative biological control:the current state of play
CHAPTER Ⅱ Development of artificial diet for Chrysopa pallens to improve rearing techniques
2.1 Introduction
2.2 Material and methods
2.2.1. Insects
2.3 Development of Artificial Diet for C. Pallens
2.3.1 Artificial diet for immature C. pallens
2.3.2 Artificial diet for C.pallens Adult
2.3.2.1 Artificial Diet 1
2.3.2.2 Artificial diet 2
2.4 Artificial diets fitness Bioassay
2.5 Results
2.5.1 Fitness suitability of artificial diets
2.5.2 Rearing of C. pallens adult on artificial diet
2.6 Discussion
Chapter Ⅲ Dietary exposure test design to study the impact of Bt proteins on immature C.pallens
3.1 Introduction
3.1.1 Insect culture
3.1.2 Insecticidal compounds
3.1.3 ELISA Kits
3.1.4 Preparation of Wash buffer and Extraction buffer
3.1.5 Dilution of Bt proteins and preparation of standard solution
3.1.6 Determination of LC_(50) and bioactivity of Bt proteins
3.1.7 Artificial diet for H. armigera
3.2 Artificial diet fitness bioassay
3.3 Validity of dietary exposure test design
3.4 Toxicity of Cry proteins to immature C. pallens
3.5 Stability of Cry proteins in the artificial diet
3.6 Bt protein bioactivity verification bioassay
3.7 Uptake of Cry proteins by C. pallens larvae
3.8 Statistical analyses
3.9 Result
3.9.1 LC_(50) of Bt proteins
3.9.2. Artificial diet fitness bioassay
3.9.3 Validity of dietary exposure test
3.9.4. Toxic impact of Cry proteins on the survival and development of immature C. pallens
3.9.5 Ingestion of Cry proteins by C. pallens
3.9.6 Stability of Bt proteins in artificial diet
3.9.7 Bio-activity of Bt proteins in artificial diets
3.10 Discussion
Chapter Ⅳ Environmental risk assessment of vegetative insecticidal protein on great lacewing Chrysopa pallens
4.1 Introduction
4.2 Materials and methods
4.2.1 Insect culture
4.2.2 Insecticidal compounds
4.2.3 ELISA Kits
4.2.4 Bioactivity of Bt proteins
4.3 Toxicity bioassay on C. pallens larvae
4.4 Toxicity evaluation bioassay on C. pallens Adult
4.5 Stability and bioactivity of Vip3Aa in artificial diet
4.5.1 ELISA analyses
4.5.2 Susceptible-insect bioassay
4.6 Data analyses
4.7 Results
4.7.1 Toxic impact of Vip3Aa on immature C. pallens
4.7.2 Effects of Vip3Aa on life-table parameters of adult C. pallens
4.7.3 Ingestion of Bt proteins by C. pallens
4.7.4 Stability of Vip3Aa in artificial diet
4.7.5 Bioactivity verification of Vip3Aa
4.8 Discussion
Chapter Ⅴ Dietary exposure pathway proves, that Cry1Ac, Cry1F and Cry2Ab expressing insect resistantgenetically engineered crops do not afflict adult lacewing Chrysopa pallens
5.1 Introduction
5.2 Materials and methods
5.2.1 Arthropod culture
5.2.2 Insecticidal compounds
5.2.3 Artificial diet for adult C. pallens
5.2.4 Cry proteins exposure to C. pallens adults
5.2.5 Intake of Cry1Ac, Cry1F and cry2Ab by adult Chrysopa pallens
5.2.6 Stability of Cry proteins in artificial diet
5.2.7 Bioactivity verification bioassay
5.2.8 Data analyses
5.3. Results
5.3.1 Effects of Cry1Ac, Cry1F and Cry2Ab on life-table parameters of adult C. pallens
5.3.2 Intake of Cry proteins by C. pallens
5.3.3 Stability of Cry proteins in artificial diet
5.3.4 Bioactivity of Cry proteins in artificial diet
5.4. Discussion
Chapter Ⅵ Artificial diet Development for Propylea japonica and Harmonia axyridis and its effects on reproductiveperformance of emerged-adults
6.1 Introduction
6.2 Materials and methods
6.2.1. Insects
6.2.2. Artificial diet
6.2.3 Immature survival and development
6.2.4 Survival and reproductive performance of adults
6.2.5 Comparison of artificial diets with pea aphid and E. kuehniella eggs
6.2.6 Statistical analysis
6.3. Results
6.3.1. Immature survival and development
6.3.2 Adult survival and reproductive performance on different diets
6.4. Discussion
Chapter Ⅶ Biosafety evaluation of Bt proteins on Immature Harmonia axyridis and Propylea japonica
7.1 Introduction
7.2 Materials and Methods
7.2.1 Insects
7.2.2 Insecticidal compounds
7.2.3 Artificial diet
7.3 Validity of dietary exposure Bioassay
7.4 Dietary exposure test
7.5 Vip3Aa, Cry1Ca and Cry1F concentrations in adult emerged from larvae fed artificial diet
7.6 Stability and Bioactivity of Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.6.1 ELISA Analyses
7.6.2. Sensitive-insect bioassay
7.7 Data analyses
7.8 Result
7.8.1 Validation of dietary test design
7.8.2 Toxic impact of Vip3Aa, Cry1Ca and Cry1Fa on Harmonia axyridis and P. japonica
7.8.3 Stability and bioactivity confirmation test for Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.8.4 Vip3Aa, Cry1Ca and Cry1F concentration measurements in emerged adults
7.8.5 Bt protein bioactivity verification bioassay
7.9 Discussion
CONCLUSION
References
Acknowledgement
Curriculum Vitae
【参考文献】:
期刊论文
[1]大草蛉幼虫对烟粉虱的捕食功能反应及捕食行为观察[J]. 刘爽,王甦,刘佰明,周长青,张帆. 中国农业科学. 2011(06)
[2]大草蛉对桃蚜和夹竹桃蚜的捕食作用研究[J]. 赵琴,陈婧,刘凤想,肖文芳,彭宇. 环境昆虫学报. 2008(03)
[3]龟纹瓢虫生物生态学特性及饲养利用研究进展[J]. 张世泽,仵均祥,张强,姜军侠,许向利,陈继安. 干旱地区农业研究. 2004(04)
[4]有益瓢虫的生防利用研究概述[J]. 荆英,黄建,黄蓬英. 山西农业大学学报(自然科学版). 2002(04)
[5]苏云金杆菌vip3 A基因的克隆、表达及杀虫活性分析[J]. 陈建武,唐丽霞,汤慕瑾,师永霞,庞义. 生物工程学报. 2002(06)
[6]三种饲料对异色瓢虫和龟纹瓢虫的饲喂效果[J]. 郭建英,万方浩. 中国生物防治. 2001(03)
[7]中国食蚧瓢虫名录[J]. 曾涛,庞虹. 昆虫天敌. 2000(02)
[8]海南岛瓢虫名录[J]. 彭正强,庞虹,任顺祥,金启安. 昆虫天敌. 1997(03)
[9]异色瓢虫生物学特性观察[J]. 何继龙,马恩沛,沈允昌,陈文龙,孙兴全. 上海农学院学报. 1994(02)
[10]棉铃虫人工饲料的研究[J]. 卓乐姒,黄月兰,杨家荣. 昆虫学报. 1981(01)
本文编号:3542697
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/3542697.html
最近更新
教材专著