不同雾化方式和喷雾间隔对营养液理化特性和生菜生长效果的影响研究
发布时间:2021-12-30 14:36
目前,较少资源下增产是农业工程领域的热点问题,雾化栽培具有极度节水节肥的优点,是解决这一问题的行之有效方法。在的雾化栽培研究中,目前仍有三个关键问题没有被解决:(1)雾化后,营养液的物理化学特性发生如何的变化?(2)雾化器关键工作参数(例如:雾滴粒径、喷雾时间和喷雾间隔)如何影响作物的生长?(3)作物的生长参数和理化参数与雾培关键工作参数的关系如何?(4)雾化栽培的最优参数是什么?本文的研究试图回答和解决上述四个关键问题,主要工作如下:1.雾化栽培系统的设计和开发为实现上述目标,首先设计了气助式静电雾化喷嘴,用于雾化营养液。在雾培系统中,雾化营养液液滴大小是影响雾培系统效果最重要的因素之一。目前,雾化栽培系统主要使用喷淋式雾化喷头,尚没有一项研究深入讨论雾化喷嘴的选择问题。本文选择压电式超声雾化喷头、气助式雾化喷头、离心式雾化喷头,并且设计了一种为了气助式静电雾化喷头用于增加根部雾滴的粘附面积。气助式静电雾化喷头可以产生比传统雾化喷头更小并且粘附性更强的雾滴。其次,采用四种喷嘴(超声波雾化喷嘴,气助式雾化喷嘴,气助式高压静电雾化喷嘴和离心雾化喷嘴)设计雾化栽培系统。其中超声波雾化喷嘴,...
【文章来源】:江苏大学江苏省
【文章页数】:227 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
1.1 Global perspective and research background
1.2 Soilless cultivation technique
1.3 Status of the soilless cultivation at abroad and home
1.4 Historical background of the aeroponic system
1.5 Need of the study and motivation
1.6 Research objectives
1.7 Outline of the dissertation
CHAPTER 2 LITERATURE REVIEW
2.1 General introduction of the chapter
2.2 Modern plant cultivation technologies in agriculture under controlled environment:a review on aeroponics
2.2.1 Introduction
2.2.2 Main components of the aeroponic system
2.2.2.1 Spraying misters and droplet sizes
2.2.2.2 Ultrasonic nozzles
2.2.2.3 Pressure(centrifugal and air-assisted)nozzles
2.2.2.4 pH and EC values of the nutrient solution
2.2.2.5 Light and temperature
2.2.2.6 Relative humidity and dissolved oxygen concentration
2.2.2.7 Spraying time,spraying interval and nutrient reservoir
2.2.3 Mechanization and optimizing of root environment in an aeroponics system
2.2.3.1 Plant growing system
2.2.3.2 Nutrient solution management in aeroponics system
2.2.4 Aeroponics engineering and potential challenges
2.2.5 Advantages and disadvantages of aeroponics system
2.2.6 What we know and what remains to be known in an aeroponics system
2.2.7 Future application prospects
2.2.8 Conclusion
2.3 Monitoring and control systems in agriculture using intelligent sensor techniques:a review of aeroponics system
2.3.1 Introduction
2.3.2 Key problems and difficulties of aeroponics system
2.3.3 Related work home and abroad
2.3.4 Aeroponics system and sensors network
2.3.4.1 Number of sensors nodes and input parameters
2.3.5 Sensors types and monitoring parameters
2.3.5.1 Temperature sensor
2.3.5.2 Humidity sensor
2.3.5.3 Light intensity sensor
2.3.5.4 CO2 sensor
2.3.5.5 Water level sensor
2.3.5.6 EC and pH sensor
2.3.6 Sensors working protocol in the aeroponics system
2.3.7 Advantages of sensors techniques in aeroponics system
2.3.8 Future application
2.3.9 Conclusion
CHAPTER 3 DESIGN AND DEVELOPMENT OF THE AEROPONIC SYSTEMS USING DIFFERENT ATOMIZATION NOZZLES
3.1 General introduction of the chapter
3.2 Design of the air-assisted electrostatic nozzle,working principle and droplet size tests of the different aeroponic atomization nozzles
3.2.1 Determination of the structural parameters of Laval tube of the air-assisted electrostatic nozzle
3.2.2 Determination of the cross-sectional area of the Laval tube throat of air-assisted electrostatic nozzle
3.3 Working principle of the different aeroponic atomization nozzles
3.3.1 Air-assisted with and without electrostatic atomization nozzle
3.3.2 Centrifugal atomizing nozzle
3.3.3 Ultrasonic atomization nozzle
3.4 Droplet size of the selected nozzles
3.4.1 Droplet sizes of the Hartmann atomization nozzle with resonance tube and air-assisted electrostatic nozzle
3.4.2 Droplet sizes of the centrifugal atomizing nozzle
3.4.3 Droplet sizes of the ultrasonic atomization nozzle
3.5 Status of the existing aeroponic products and systems
3.6 Design and development of aeroponics systems
3.7 Main parts and required material
3.7.1 Growth chamber and nutrient reservoir
3.7.2 Atomization nozzles
3.7.3 Additional required material
3.8 Manufacturing of the different aeroponic systems
3.8.1 Aeroponic systems developed with air-assisted nozzles
3.8.2 Aeroponic system developed with centrifugal atomizing nozzle
3.8.3 Aeroponic system developed with ultrasonic atomization nozzles
3.9 Technical challenges
3.10 Routine and preventative maintenance of the aeroponic system
3.11 Advantages of the proposed aeroponic systems
3.12 Conclusion
CHAPTER 4 EFFECTS OF AEROPONIC NOZZLES,NUTRIENT SOLUTION SPRAYING TIMES AND SPRAYING INTERVALS ON PHYSICOCHEMICAL PROPERTIES OF THE ATOMIZED NUTRIENT SOLUTION
4.1 General introduction of the chapter
4.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and spraying intervals on the EC and pH values of the YNS..
4.2.1 Introduction
4.2.2 Materials and methods
4.2.2.1 Aeroponic systems and growth condition
4.2.2.2 Preparation of the nutrient solution
4.2.2.3 Measurements of EC and pH values of the nutrient solution
4.2.2.4 Experiment design
4.2.2.5 Statistical analysis
4.2.3 Results
4.2.3.1 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on EC value of the atomized YNS
4.2.3.1.1 Verifying test of the developed models forΔEC
4.2.3.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on pH value of the atomized YNS
4.2.3.2.1 Verifying test of the developed models forΔpH
4.3 Effects of different mechanical and ultrasonic nozzles(droplet sizes),nutrient solution spraying times and nutrient solution spraying intervals on physicochemical properties of the atomized SCAULVFB
4.3.1 Introduction
4.3.2 Materials and methods
4.3.2.1 Cultivation systems and growth condition
4.3.2.2 Droplet sizes of the selected nozzles
4.3.2.3 Nutrient solution
4.3.2.4 Measurements of the EC, pH, DO and T of the nutrient solution
4.3.2.5 Experimental setup
4.3.2.6 Data analysis
4.3.3 Results
4.3.3.1 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals on the EC value of the SCAULVFB
4.3.3.1.1 Verifying test of the developed models forΔEC
4.3.3.2 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals times on the p H value of the SCAULVFB
4.3.3.2.1 Verifying test of the developed models forΔp H
4.3.3.3 Effect of the different aeroponic nozzles(droplet sizes),spraying times and spraying intervals on the DO
4.3.3.3.1 Verifying test of developed models forΔDO
4.3.3.4 Effect of the different aeroponic nozzles, nutrient solution spraying times and spraying intervals on the T of the SCAULVFB
4.3.3.4.1 Verifying test of the developed models for ΔT
4.4 Discussion
4.5 Conclusion
CHAPTER 5 EFFECTS OF VARIOUS AEROPONIC NOZZLES (DROPLET SIZES) ON GROWTH, TOTAL POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF THE LEAFY LETTUCE
5.1 Introduction
5.2 Materials and Methods
5.2.1 Experimental setup
5.2.2 Selection of the aeroponic nozzles
5.2.3 Determination of the droplet sizes of the selected nozzles
5.2.4 Aeroponic systems
5.2.5 Spraying time and spraying interval
5.2.6 Plant material and nutrient solution
5.2.7 Plant harvesting and measurement of the selected parameters
5.2.8 Chlorophyll content and growth parameters
5.2.9 Determination of the total polyphenol content(TPC)and antioxidant activity(AA)
5.2.9.1 Sample preparation for extraction
5.2.9.2 Determination of the total polyphenol content and antioxidant activity
5.2.10 Statistical analysis
5.3 Results
5.3.1 Droplet sizes of the selected atomizers
5.3.2 Changes in pH and EC values of the nutrient solution
5.3.3 Effect of different aeroponic nozzles(droplet sizes)on chlorophyll content and growth parameters of the lettuce plants
5.3.3.1 Chlorophyll content of the lettuce plants
5.3.3.2 Growth parameters of the lettuce plants
5.3.3.3 Correlation analysis between chlorophyll content and growth parameters of the lettuce plants cultivated with different aeroponic nozzles
5.3.4 Effect of different aeroponics nozzles(droplets)on total polyphenol content and antioxidant activity of the lettuce plants
5.3.4.1 Total polyphenol content
5.3.4.2 Total antioxidant capacity assay
5.3.4.3 DPPH free radical scavenging assay
5.3.4.4 ABTS+·Radical-Scavenging Assay
5.3.4.5 Ferric reducing power assay
5.3.4.6 Correlation analysis between total polyphenol content and antioxidant activity of the lettuce plants cultivated with different aeroponic nozzles
5.4 Discussion
5.5 Conclusion
CHAPTER 6 LETTUCE PLANT GROWTH,DEVELOPMENT, AND NUTRIENT UPTAKE RESPONSE WITH DIFFERENT AEROPONIC NUTRIENT SOLUTION SPRAYING INTERVALS
6.1 Introduction
6.2 Materials and Methods
6.2.1 Location and climate condition of the study area
6.2.2 Experimental setup
6.2.3 Cultivation systems
6.2.4 Nutrient solution preparation,spraying time and spraying intervals
6.2.5 Plant material and growth condition
6.2.6 Harvesting and measurements
6.2.7 Determination of the chlorophyll content and growth parameters
6.2.8 Determination of the Nitrogen(N),phosphorus(P)and potassium(K)uptake of the lettuce plants
6.2.9 Statistical analysis
6.3 Results
6.3.1 Effect of different aeroponic nutrient solution spraying intervals on growth and development parameters of the lettuce plants
6.3.1.1 Chlorophyll content
6.3.1.2 Stem diameter
6.3.1.3 Number of leaves per plant
6.3.1.4 Leaf area
6.3.1.5 Shoot length
6.3.1.6 Root length
6.3.1.7 Shoot wet and dry weight
6.3.1.8 Root wet and dry weight
6.3.2 Effect of different aeroponic nutrient solution spraying intervals on nutrient uptake parameters of the lettuce plant
6.3.2.1 Nitrogen uptake of the lettuce plants
6.3.2.2 Phosphorus uptake of the lettuce plants
6.3.2.3 Potassium uptake of the lettuce plants
6.3.3 Lettuce plant growth, development, and nutrient uptake prediction models for different aeroponic nozzles and nutrient solution spraying intervals
6.3.3.1 Chlorophyll content prediction model
6.3.3.2 Stem diameter prediction model
6.3.3.3 Leaf area prediction model
6.3.3.4 Number of leaves per plant prediction model
6.3.3.5 Shoot length prediction model
6.3.3.6 Root length prediction model
6.3.3.7 Nitrogen uptake prediction model
6.3.3.8 Phosphorus uptake prediction model
6.3.3.9 Potassium uptake prediction model
6.4 Discussion
6.5 Conclusion
CHAPTER 7 SUMMARY, RECOMMENDATION, FUTURE PERSPECTIVE AND INNOVATION OF THE STUDY
7.1 Summary
7.2 Recommendation
7.3 Future perspective
7.4 Innovation
REFERENCES
PUBLICATIONS
【参考文献】:
期刊论文
[1]带阶梯型谐振腔的Hartmann低频超声雾化喷嘴设计及试验[J]. 高建民,马俊龙. 农业工程学报. 2017(12)
[2]基于拉瓦尔效应的超音速喷嘴雾化性能分析与试验[J]. 杨超,陈波,姜万录,高殿荣,金光俊. 农业工程学报. 2016(19)
[3]海南夏季散叶生菜品种栽培比较试验[J]. 陈艳丽,付亚男,李绍鹏,林师森. 北方园艺. 2014(19)
[4]桁架式超声雾化栽培器的雾滴沉降和根际温湿度变化规律[J]. 高建民,黄桂珍,尹文楚,陆岱鹏,李俊一,刘昌鑑. 农业工程学报. 2013(06)
[5]缩扩型超音速喷管的设计与仿真[J]. 王克印,韩星星,张晓涛,刘耀鹏,陈吉潮. 中国工程机械学报. 2011(03)
[6]中国大陆无土栽培发展概况(英文)[J]. 蒋卫杰,刘伟,余宏军,郑光华. 农业工程学报. 2001(01)
本文编号:3558399
【文章来源】:江苏大学江苏省
【文章页数】:227 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
1.1 Global perspective and research background
1.2 Soilless cultivation technique
1.3 Status of the soilless cultivation at abroad and home
1.4 Historical background of the aeroponic system
1.5 Need of the study and motivation
1.6 Research objectives
1.7 Outline of the dissertation
CHAPTER 2 LITERATURE REVIEW
2.1 General introduction of the chapter
2.2 Modern plant cultivation technologies in agriculture under controlled environment:a review on aeroponics
2.2.1 Introduction
2.2.2 Main components of the aeroponic system
2.2.2.1 Spraying misters and droplet sizes
2.2.2.2 Ultrasonic nozzles
2.2.2.3 Pressure(centrifugal and air-assisted)nozzles
2.2.2.4 pH and EC values of the nutrient solution
2.2.2.5 Light and temperature
2.2.2.6 Relative humidity and dissolved oxygen concentration
2.2.2.7 Spraying time,spraying interval and nutrient reservoir
2.2.3 Mechanization and optimizing of root environment in an aeroponics system
2.2.3.1 Plant growing system
2.2.3.2 Nutrient solution management in aeroponics system
2.2.4 Aeroponics engineering and potential challenges
2.2.5 Advantages and disadvantages of aeroponics system
2.2.6 What we know and what remains to be known in an aeroponics system
2.2.7 Future application prospects
2.2.8 Conclusion
2.3 Monitoring and control systems in agriculture using intelligent sensor techniques:a review of aeroponics system
2.3.1 Introduction
2.3.2 Key problems and difficulties of aeroponics system
2.3.3 Related work home and abroad
2.3.4 Aeroponics system and sensors network
2.3.4.1 Number of sensors nodes and input parameters
2.3.5 Sensors types and monitoring parameters
2.3.5.1 Temperature sensor
2.3.5.2 Humidity sensor
2.3.5.3 Light intensity sensor
2.3.5.4 CO2 sensor
2.3.5.5 Water level sensor
2.3.5.6 EC and pH sensor
2.3.6 Sensors working protocol in the aeroponics system
2.3.7 Advantages of sensors techniques in aeroponics system
2.3.8 Future application
2.3.9 Conclusion
CHAPTER 3 DESIGN AND DEVELOPMENT OF THE AEROPONIC SYSTEMS USING DIFFERENT ATOMIZATION NOZZLES
3.1 General introduction of the chapter
3.2 Design of the air-assisted electrostatic nozzle,working principle and droplet size tests of the different aeroponic atomization nozzles
3.2.1 Determination of the structural parameters of Laval tube of the air-assisted electrostatic nozzle
3.2.2 Determination of the cross-sectional area of the Laval tube throat of air-assisted electrostatic nozzle
3.3 Working principle of the different aeroponic atomization nozzles
3.3.1 Air-assisted with and without electrostatic atomization nozzle
3.3.2 Centrifugal atomizing nozzle
3.3.3 Ultrasonic atomization nozzle
3.4 Droplet size of the selected nozzles
3.4.1 Droplet sizes of the Hartmann atomization nozzle with resonance tube and air-assisted electrostatic nozzle
3.4.2 Droplet sizes of the centrifugal atomizing nozzle
3.4.3 Droplet sizes of the ultrasonic atomization nozzle
3.5 Status of the existing aeroponic products and systems
3.6 Design and development of aeroponics systems
3.7 Main parts and required material
3.7.1 Growth chamber and nutrient reservoir
3.7.2 Atomization nozzles
3.7.3 Additional required material
3.8 Manufacturing of the different aeroponic systems
3.8.1 Aeroponic systems developed with air-assisted nozzles
3.8.2 Aeroponic system developed with centrifugal atomizing nozzle
3.8.3 Aeroponic system developed with ultrasonic atomization nozzles
3.9 Technical challenges
3.10 Routine and preventative maintenance of the aeroponic system
3.11 Advantages of the proposed aeroponic systems
3.12 Conclusion
CHAPTER 4 EFFECTS OF AEROPONIC NOZZLES,NUTRIENT SOLUTION SPRAYING TIMES AND SPRAYING INTERVALS ON PHYSICOCHEMICAL PROPERTIES OF THE ATOMIZED NUTRIENT SOLUTION
4.1 General introduction of the chapter
4.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and spraying intervals on the EC and pH values of the YNS..
4.2.1 Introduction
4.2.2 Materials and methods
4.2.2.1 Aeroponic systems and growth condition
4.2.2.2 Preparation of the nutrient solution
4.2.2.3 Measurements of EC and pH values of the nutrient solution
4.2.2.4 Experiment design
4.2.2.5 Statistical analysis
4.2.3 Results
4.2.3.1 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on EC value of the atomized YNS
4.2.3.1.1 Verifying test of the developed models forΔEC
4.2.3.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on pH value of the atomized YNS
4.2.3.2.1 Verifying test of the developed models forΔpH
4.3 Effects of different mechanical and ultrasonic nozzles(droplet sizes),nutrient solution spraying times and nutrient solution spraying intervals on physicochemical properties of the atomized SCAULVFB
4.3.1 Introduction
4.3.2 Materials and methods
4.3.2.1 Cultivation systems and growth condition
4.3.2.2 Droplet sizes of the selected nozzles
4.3.2.3 Nutrient solution
4.3.2.4 Measurements of the EC, pH, DO and T of the nutrient solution
4.3.2.5 Experimental setup
4.3.2.6 Data analysis
4.3.3 Results
4.3.3.1 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals on the EC value of the SCAULVFB
4.3.3.1.1 Verifying test of the developed models forΔEC
4.3.3.2 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals times on the p H value of the SCAULVFB
4.3.3.2.1 Verifying test of the developed models forΔp H
4.3.3.3 Effect of the different aeroponic nozzles(droplet sizes),spraying times and spraying intervals on the DO
4.3.3.3.1 Verifying test of developed models forΔDO
4.3.3.4 Effect of the different aeroponic nozzles, nutrient solution spraying times and spraying intervals on the T of the SCAULVFB
4.3.3.4.1 Verifying test of the developed models for ΔT
4.4 Discussion
4.5 Conclusion
CHAPTER 5 EFFECTS OF VARIOUS AEROPONIC NOZZLES (DROPLET SIZES) ON GROWTH, TOTAL POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF THE LEAFY LETTUCE
5.1 Introduction
5.2 Materials and Methods
5.2.1 Experimental setup
5.2.2 Selection of the aeroponic nozzles
5.2.3 Determination of the droplet sizes of the selected nozzles
5.2.4 Aeroponic systems
5.2.5 Spraying time and spraying interval
5.2.6 Plant material and nutrient solution
5.2.7 Plant harvesting and measurement of the selected parameters
5.2.8 Chlorophyll content and growth parameters
5.2.9 Determination of the total polyphenol content(TPC)and antioxidant activity(AA)
5.2.9.1 Sample preparation for extraction
5.2.9.2 Determination of the total polyphenol content and antioxidant activity
5.2.10 Statistical analysis
5.3 Results
5.3.1 Droplet sizes of the selected atomizers
5.3.2 Changes in pH and EC values of the nutrient solution
5.3.3 Effect of different aeroponic nozzles(droplet sizes)on chlorophyll content and growth parameters of the lettuce plants
5.3.3.1 Chlorophyll content of the lettuce plants
5.3.3.2 Growth parameters of the lettuce plants
5.3.3.3 Correlation analysis between chlorophyll content and growth parameters of the lettuce plants cultivated with different aeroponic nozzles
5.3.4 Effect of different aeroponics nozzles(droplets)on total polyphenol content and antioxidant activity of the lettuce plants
5.3.4.1 Total polyphenol content
5.3.4.2 Total antioxidant capacity assay
5.3.4.3 DPPH free radical scavenging assay
5.3.4.4 ABTS+·Radical-Scavenging Assay
5.3.4.5 Ferric reducing power assay
5.3.4.6 Correlation analysis between total polyphenol content and antioxidant activity of the lettuce plants cultivated with different aeroponic nozzles
5.4 Discussion
5.5 Conclusion
CHAPTER 6 LETTUCE PLANT GROWTH,DEVELOPMENT, AND NUTRIENT UPTAKE RESPONSE WITH DIFFERENT AEROPONIC NUTRIENT SOLUTION SPRAYING INTERVALS
6.1 Introduction
6.2 Materials and Methods
6.2.1 Location and climate condition of the study area
6.2.2 Experimental setup
6.2.3 Cultivation systems
6.2.4 Nutrient solution preparation,spraying time and spraying intervals
6.2.5 Plant material and growth condition
6.2.6 Harvesting and measurements
6.2.7 Determination of the chlorophyll content and growth parameters
6.2.8 Determination of the Nitrogen(N),phosphorus(P)and potassium(K)uptake of the lettuce plants
6.2.9 Statistical analysis
6.3 Results
6.3.1 Effect of different aeroponic nutrient solution spraying intervals on growth and development parameters of the lettuce plants
6.3.1.1 Chlorophyll content
6.3.1.2 Stem diameter
6.3.1.3 Number of leaves per plant
6.3.1.4 Leaf area
6.3.1.5 Shoot length
6.3.1.6 Root length
6.3.1.7 Shoot wet and dry weight
6.3.1.8 Root wet and dry weight
6.3.2 Effect of different aeroponic nutrient solution spraying intervals on nutrient uptake parameters of the lettuce plant
6.3.2.1 Nitrogen uptake of the lettuce plants
6.3.2.2 Phosphorus uptake of the lettuce plants
6.3.2.3 Potassium uptake of the lettuce plants
6.3.3 Lettuce plant growth, development, and nutrient uptake prediction models for different aeroponic nozzles and nutrient solution spraying intervals
6.3.3.1 Chlorophyll content prediction model
6.3.3.2 Stem diameter prediction model
6.3.3.3 Leaf area prediction model
6.3.3.4 Number of leaves per plant prediction model
6.3.3.5 Shoot length prediction model
6.3.3.6 Root length prediction model
6.3.3.7 Nitrogen uptake prediction model
6.3.3.8 Phosphorus uptake prediction model
6.3.3.9 Potassium uptake prediction model
6.4 Discussion
6.5 Conclusion
CHAPTER 7 SUMMARY, RECOMMENDATION, FUTURE PERSPECTIVE AND INNOVATION OF THE STUDY
7.1 Summary
7.2 Recommendation
7.3 Future perspective
7.4 Innovation
REFERENCES
PUBLICATIONS
【参考文献】:
期刊论文
[1]带阶梯型谐振腔的Hartmann低频超声雾化喷嘴设计及试验[J]. 高建民,马俊龙. 农业工程学报. 2017(12)
[2]基于拉瓦尔效应的超音速喷嘴雾化性能分析与试验[J]. 杨超,陈波,姜万录,高殿荣,金光俊. 农业工程学报. 2016(19)
[3]海南夏季散叶生菜品种栽培比较试验[J]. 陈艳丽,付亚男,李绍鹏,林师森. 北方园艺. 2014(19)
[4]桁架式超声雾化栽培器的雾滴沉降和根际温湿度变化规律[J]. 高建民,黄桂珍,尹文楚,陆岱鹏,李俊一,刘昌鑑. 农业工程学报. 2013(06)
[5]缩扩型超音速喷管的设计与仿真[J]. 王克印,韩星星,张晓涛,刘耀鹏,陈吉潮. 中国工程机械学报. 2011(03)
[6]中国大陆无土栽培发展概况(英文)[J]. 蒋卫杰,刘伟,余宏军,郑光华. 农业工程学报. 2001(01)
本文编号:3558399
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/3558399.html
最近更新
教材专著