联合信息在价值驱动注意捕获中的作用
[Abstract]:Priority attention to value-related stimuli is adaptive and can avoid loss and maximize reward. In previous studies, the characteristics of reward association were all single visual features related to task (e.g., color, shape, direction). However, the choice of attention for a certain feature was regulated by spatial position. When reward association, task It is not clear how the relevant features are regulated by spatial information. In order to explore this issue, this study uses joint information (i.e. the combination of task-related color features and spatial information) to predict rewards and examine value-driven attention capture. The purpose of this study was to explore the role of spatial location information and color and spatial position information in value-driven attention capture. The same stimulus and low reward in two adjacent locations were linked and designed for 2 (reward level: high, low) *2 (stage: 1, 2) subjects. The results showed that attention could be captured only when distractors appeared in the neutral position between high and low reward positions or between two high reward positions. In the training stage, two adjacent positions were connected with high and low rewards (i.e. removing the neutral position between the two high reward positions) and 2 (reward level: high, low) *2 (stage: 1, 2) subjects were designed. In the test stage, the single factor design (distraction position: no appearance, high) was performed. The results showed that only when distractors appeared in high reward positions could attention be captured. The results supported the overall effect. Experiment 3 examined the interaction between color and location information in value-driven attention capture. Twenty-four subjects participated in the experiment. In the training stage, the color and position were combined to predict the reward, which was 2 (reward level: high, low)*2 (stage: 1, 2). In the test stage, the presentation of distraction was 2 (color: high reward color, low reward color)*5 (position: high reward position, low reward position, neutral position between high reward, low reward position). The results showed that attention could be captured only when the high reward color appeared in the neutral position between the high reward position and the high reward position. Experiment 4 explored the value-driven attention capture effect based on spatial scenarios. Twenty-four subjects participated in the experiment. The results showed that attention could be captured only when distractors appeared in high-reward scenarios. Experiment 5 examined the interaction between color and spatial joint information in value-driven attention capture. 24 subjects participated in the experiment. During the training phase, one scenario was used. Color A was associated with a high reward, while color B in another scenario was associated with a low reward, and was designed for 2 (reward level: high, low) *6 (stage: 1-6). The test phase was 3 (color: high reward color, low reward color, distraction free)*3 (scenario: high reward scenario, low reward scenario, neutral scenario). Design. The results showed that high-reward colors captured attention in all scenarios. After the experiment of study 1 and study 2, subjects were asked to complete the reward-association questionnaire. The experimental results showed that most of the subjects could be aware of the reward-association rule explicitly during the training phase. The role and mechanism of value-driven attention capture included two experiments. Experiment 6 examined whether the reward-linked task-independent color stimuli as prominent distractors could capture attention. Parity Consistency of Side and Target Numbers: Consistency, Inconsistency. The test phase was designed as a single factor (distractors present: absence, high-reward distractors present, low-reward distractors present). The results showed that, when high-reward colors appear as prominent distractors, the range is larger than that of low-reward colors. Experiments 7 examined whether the task-independent color stimuli of reward-link could capture attention as non-prominent distractors, and whether the value-driven attention-capture effect was due to spatial transfer or filtering costs. 18 participants participated in the experiment. The experimental setup of training and testing phases The results of behavioral data showed that the color distractors associated with high rewards could still capture attention when they were no longer highlighted. ERPs data showed that the distractors associated with high rewards did not induce N2pc components. The following conclusions can be drawn: (1) The reward predictive information is sufficient and necessary for the production of value-driven attention capture. The reward predictive information can be task-related, such as the color and location of the target, or task-independent, such as the scene in which the target stimulus exists or the distracted stimulus features unrelated to the target. Value-driven attention capture effect can be produced by measuring and distinguishing different amount of rewards. (2) Value-driven attention capture produced by location has a certain generalization, which shows that distractors can also produce value-driven attention capture effect when they appear in the neutral position between two high rewards. This generalization is due to training. (3) When color and position were combined to predict reward, individuals were able to "bind" the joint features of color and position to establish a link with reward at the training stage; the link established at the training stage could not be generalized to some features. (4) When color and scene were combined to predict reward. In the training stage, most of the subjects were able to perceive the association between information and reward, and the individuals were able to learn the explicit relationship between information and reward. (6) The distracted stimulus characteristics associated with high reward in the training stage were tested. The results of ERPs show that attention capture is not caused by spatial shift of attention, but by filtering cost.
【学位授予单位】:天津师范大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:B842.3
【相似文献】
相关期刊论文 前10条
1 徐玉珍,李文馥;对幼儿园小班儿童进行颜色教学的探索[J];心理发展与教育;1988年02期
2 陈曦;俄汉颜色词语的非颜色意义[J];中国俄语教学;1995年01期
3 陈红;;俄汉颜色词对比初探[J];黑河教育;2011年11期
4 赵国英 ,李华;颜色传输技术在影视制作和处理中的应用[J];影视技术;2003年06期
5 傅治夷;汉英颜色词在使用上的比较[J];钦州学刊;1998年03期
6 崔姗姗;;俄汉语颜色词“黑/白”隐喻对比分析[J];林区教学;2014年02期
7 张健;;“红”语义隐喻认知分析[J];渤海大学学报(哲学社会科学版);2012年05期
8 张积家;梁文韬;黄庆清;;大学生颜色词联想研究[J];语言文字应用;2006年02期
9 何冰;;浅谈颜色词的翻译——颜色词与语境[J];科技信息;2009年04期
10 张淑慧;;汉英颜色词文化意义跨语言共性的认知阐释[J];黑龙江教育学院学报;2009年06期
相关会议论文 前10条
1 崔翔宇;许百华;;颜色特征信息对客体档案保持的影响[A];第十二届全国心理学学术大会论文摘要集[C];2009年
2 朱嘉珑;;俄语颜色词意义浅析[A];福建省外国语文学会2009年年会暨学术研讨会论文集[C];2009年
3 委福祥;曲彦平;苑玮琦;;镀层腐蚀形貌图像颜色特征的提取与分析[A];首届信息获取与处理学术会议论文集[C];2003年
4 黄勃;王宽全;李乃民;;基于像素的舌象颜色分析[A];第四次全国中西医结合诊断学术研讨会论文集[C];2010年
5 翟文鹏;吴爱国;杜春燕;;基于烟雾颜色特征和运动特征分析的视频烟雾探测[A];第二十九届中国控制会议论文集[C];2010年
6 吴成玉;邰晓英;赵杰煜;;基于颜色特征的图像检索方法与实现[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
7 朱伟涛;刘士荣;邱雪娜;;基于颜色和粒子滤波的视频目标检测与跟踪[A];PCC2009—第20届中国过程控制会议论文集[C];2009年
8 郭忠伟;李洪峰;;C~3 I系统中基于颜色特征的战场图像快速检索[A];中国造船工程学会电子技术学术委员会2006学术年会论文集(上册)[C];2006年
9 林名强;张陈斌;陈宗海;;运动与颜色特征相融合的目标跟踪算法[A];系统仿真技术及其应用学术论文集(第15卷)[C];2014年
10 郝婷;孟正大;;机器人在复杂环境下的火炬识别[A];2005全国自动化新技术学术交流会论文集(二)[C];2005年
相关重要报纸文章 前5条
1 董岚;蓝色蓝宝石之颜色分级[N];中国黄金报;2004年
2 成都监测台 吴或;基于颜色特征的网络不良视频检测技术研究[N];电子报;2013年
3 张仁山;翡翠名称的特征[N];中国矿业报;2003年
4 白毅;中科院上海神经所:发现果蝇具有基于经验的学习能力[N];中国医药报;2007年
5 刘占军;“红蓝黄绿”任我搜[N];中国电脑教育报;2009年
相关博士学位论文 前10条
1 王娟;基于计算机视觉的棉花干旱诊断研究[D];石河子大学;2014年
2 白雪峰;足球视频内容分析关键技术研究[D];哈尔滨工业大学;2014年
3 陆荣秀;基于颜色特征的镨/钕萃取过程组分含量检测方法研究[D];南昌大学;2015年
4 迟莹莹;新旧客体颜色比例对预览效应的影响机制[D];东北师范大学;2016年
5 刘丽;联合信息在价值驱动注意捕获中的作用[D];天津师范大学;2017年
6 陈雁;纺织服装颜色风格的原理与应用[D];苏州大学;2002年
7 肖学中;基于实例的颜色处理新技术研究[D];上海交通大学;2009年
8 戴天虹;基于计算机视觉的木质板材颜色分类方法的研究[D];东北林业大学;2008年
9 蒋孝锋;服装颜色明度对人情感的影响机制[D];苏州大学;2011年
10 张可为;基于颜色标记图像着色的关键技术研究[D];中南大学;2014年
相关硕士学位论文 前10条
1 赵颖;有关历代主要字词典所收颜色词的系统研究[D];山西师范大学;2010年
2 许媛;洱海蓝藻爆发识别的研究及工程实现[D];昆明理工大学;2015年
3 沈新宁;基于颜色特征的快速图像检索技术的研究[D];复旦大学;2014年
4 张晶晶;基于高光谱成像技术的杏成熟度判别研究[D];山西农业大学;2015年
5 韩大洋;提高人眼匹配显示器到投影仪颜色再现精度的方法研究[D];云南师范大学;2015年
6 唐钦;基于纹理和颜色特征的植物叶片识别方法研究[D];浙江大学;2015年
7 任天威;基于stm32微处理器的颜色采集与分析[D];黑龙江大学;2015年
8 许世杰;基于色差模型的色盲辅助矫正方法研究[D];西安电子科技大学;2014年
9 周国庆;基于视觉显著性的图像目标检测设计与实现[D];西安电子科技大学;2014年
10 王婧;纺织品颜色分类及色差检测系统研究[D];西安工程大学;2015年
,本文编号:2190743
本文链接:https://www.wllwen.com/shoufeilunwen/rwkxbs/2190743.html