短跑加速阶段与最大速度阶段生物力学特征研究
本文关键词:短跑加速阶段与最大速度阶段生物力学特征研究 出处:《上海体育学院》2016年博士论文 论文类型:学位论文
更多相关文章: 运动学 地面反作用力 环节互动力学 肌电图 神经肌肉控制
【摘要】:研究目的:短跑是一项要求运动员在最短的时间内通过一段较短距离的田径运动,需要运动员发挥最大下肢力量与爆发力。它是由多个阶段组成。短跑的成功取决于在加速阶段尽可能快地完成加速以及在最大速度阶段尽可能地维持住最大速度。每个阶段的生物力学机制不同,进而对运动员的能力要求也有所差异。大多数的短跑研究仅关注了短跑某一阶段,较少研究专注于分析不同阶段间的差异。本研究试图分析短跑加速阶段与最大速度阶段的生物力学指标以及神经肌肉控制机制的差异,进而探讨不同阶段对运动员能力要求的差异,为将来针对性训练项目的设计提供理论参考。研究方法:使用Vicon红外运动捕捉系统(200Hz,12个摄像头)、Kistler测力台(1000Hz,3块)以及Delsys肌电无线采集系统(4000Hz,7导)采集20名短跑运动员加速阶段与最大速度阶段的运动学、地面反作用力以及肌电图数据。起跑线分别距离第一块测力台约为12米与40米以采集短跑加速阶段与最大速度阶段数据。用Visual 3D对运动学与地面反作用力数据进行低通滤波处理以及建立15环节人体模型计算身体重心速度,低通滤波截止频率分别为13Hz与72Hz。采用C#语言自编环节互动力学软件计算下肢三关节一个步态周期内的环节互动力学各力矩分量。采用Delsys数据处理软件对肌电图数据进行滤波整流处理,用C#语言自编肌电图数据处理软件计算各时期的均方根振幅。采用配对样本T检验进行加速阶段与最大速度阶段各指标差异的统计学分析,显著水平为α=0.05。针对不同数据集,显著水平进行Bonferroni调整。研究结果:两短阶段在跑速、支撑期时长以及步长上具有显著性差异。在水平方向地面反作用力指标,加速阶段制动冲量与推进冲量的比值约为1:4,最大速度阶段推进冲量略大于制动冲量。加速阶段的制动力峰值显著小于最大速度阶段,而推进力峰值没有显著性差异。峰值出现时刻两阶段相似,制动力峰值出现在10%支撑期,推进力峰值出现在72%支撑期。最大速度阶段的垂直力峰值显著大于加速阶段,但垂直冲量两阶段间没有显著性差异。垂直力峰值出现时刻两阶段存在显著性差异,最大速度阶段为31%支撑期,加速阶段为37%支撑期。对于环节互动力学指标,支撑期的下肢肌肉力矩主要对抗接触力矩;摆动期的下肢肌肉力矩主要对抗惯性力矩。在10%支撑期时的屈髋与伸膝肌肉力矩峰值、30%—40%支撑期时的伸膝与踝关节跖屈肌肉力矩峰值以及摆动末期的伸髋肌肉力矩峰值上,两短跑阶段存在显著性差异。最大速度阶段的肌肉力矩峰值大于加速阶段。两短跑阶段步态各时期主要激活肌肉的均方根振幅存在显著性差异。分别为支撑期(制动期与推进期)的腓肠肌内侧头、前摆期的股直肌与胫骨前肌以及后摆期的股二头肌。研究结论:运动员在加速阶段能够完成身体重心的加速并不取决于水平推进力更大,而是水平制动力更小。这提示提高短跑加速表现的技术优化训练应更加注重降低加速阶段的水平制动力。从动作控制角度,支撑期内肌肉力矩主要抵抗平衡地面反作用力引起的接触力矩。两短跑阶段在10%支撑期与30%—40%支撑期时下肢肌肉力矩峰值的差异分别与水平制动力峰值和垂直力峰值差异有关。最大速度阶段支撑期的腓肠肌激活程度更高以应对由更大垂直力峰值引起的更强烈的落地冲击。最大速度阶段前摆期股直肌激活程度更高以产生更大屈髋肌肉力矩对抗更大的伸髋惯性力矩;最大速度阶段后摆期股二头激活程度更高以产生更大伸髋肌肉力矩对抗更大的屈髋惯性力矩。这些发现对于田径短跑训练有着重要指导意义。
[Abstract]:Objective: the purpose of this study is a sprint athletes through a short distance track in the shortest time, athletes are required to maximize the lower limb strength and explosive force. It is composed of multiple stages. Success in the sprint in the acceleration stage as soon as possible and accelerate at maximum speed as much as possible to maintain maximum speed. The biomechanical mechanism of each stage is different, then the capacity requirements of athletes are different. Most of the studies focus only on the sprint sprint at a certain stage, few studies focus on the analysis of differences between different stages. This study attempts to analyze the differences of sprint speed and maximum speed stage biomechanical index phase and nerve muscle the control mechanism, and discusses the different stages of different athletes ability requirements, for the future to design training programs and provide a theoretical reference. Research methods: using infrared Vicon motion capture system (200Hz, 12, camera) Kistler forcemeasurement (1000Hz, 3) and Delsys (4000Hz, wireless EMG acquisition system 7) collected 20 sprinters kinematic acceleration phase and the maximum velocity phase, ground reaction force and EMG data. The starting line respectively. From the first block of force platform is about 12 meters and 40 meters sprint to collect the acceleration phase and the maximum velocity phase data. On kinematics and ground reaction force data were low-pass filtering and the establishment of 15 parts of human body model to calculate the velocity of body gravity with Visual 3D, low pass filter cutoff frequency were 13Hz and 72Hz. by mechanical interaction link C# language to calculate the three joints of the lower limb during one gait cycle by mechanical links interactive software. Each moment component to analyze the EMG data filtering rectification treatment using Delsys data processing software, C# The RMS amplitude of EMG data processing software compiled language to calculate the period. Using paired samples T test was used for statistical analysis of different phases and each index of maximum speed stage of acceleration, the significant level of alpha =0.05. for different data sets, Bonferroni adjustment significant level. Results: two stages in the short run speed, significant support during the period of time and step. In the horizontal ground reaction force index, the ratio of the acceleration phase and braking impulse impulse is about 1:4, the maximum speed stage propulsion is slightly greater than the braking impulse. The braking force peak acceleration stage is significantly less than the maximum speed stage, and there is no significant difference between the thrust peak. The peak time is two the stage is similar to that of the peak power support period in 10%, propulsion peak in the 72% support period. The vertical force peak stage was significantly higher than that with maximum speed Speed, but the vertical impulse between two stages had no significant difference. There exist significant differences between the two stage time peak vertical force, the maximum speed of support for a period of 31% stage, accelerate the phase 37% support period. For interactive mechanical index of links, support of the lower limb muscle torque mainly against the contact moment; lower extremity muscle torque mainly against inertia moment of the swing phase. In the 10% support period of hip flexion and knee extensor muscle torque peak, 30% - 40% support period of knee extensor and ankle plantar flexor muscle peak torque and swing at the end of the hip extensor muscle torque peak, there is a significant difference between the two sprint stage. Muscle torque peak stage is larger than the maximum speed the stage of acceleration. There is a significant difference between the RMS amplitude of two sprint stage gait in each period. The main activation of muscle respectively support phase (braking period and advance period) of the medial head of gastrocnemius muscle, placed in front of the stage The rectus femoris muscle and anterior tibial muscle and back stage femoral head two muscle. Conclusion: accelerate the athletes to complete the body center of gravity in the acceleration stage does not depend on the level of more thrust, but the level of power system. This suggests that smaller improved sprint acceleration performance technology optimization training should pay more attention to reduce the level of acceleration phase of the braking force from the angle of control action. During the period, the main support muscle torque resistance contact ground reaction force caused by the torque balance. Two stage and 30% stage sprint support - 40% support phase difference lower extremity muscle peak torque respectively with the horizontal and vertical power peak related to the differences in 10%. The maximum speed stage supporting phase of gastrocnemius muscle activation in order to cope with the higher degree caused by greater vertical force peak more intense. The maximum speed of landing impact stage before the activation of a higher degree of femoral rectus to produce greater hip flexion Muscle torque against greater hip extensor moment of inertia; the maximum speed two head back stage stock activation more to produce greater hip extensor muscle torque against greater hip flexion moment of inertia. These findings have important guiding significance for sprint training.
【学位授予单位】:上海体育学院
【学位级别】:博士
【学位授予年份】:2016
【分类号】:G822.1;G804.6
【相似文献】
相关期刊论文 前4条
1 班晓娜;;发展辽宁服务业吸纳就业的思考[J];辽宁经济;2006年03期
2 朱桂梅;徐锦忠;;一种典型运动问题的解法[J];河北理科教学研究;2006年02期
3 韩庆春;;自行车的功率[J];物理教学;2008年06期
4 ;[J];;年期
相关会议论文 前2条
1 徐和平;;遵循城镇化的规律、积极稳妥推进我省城镇化进程的建议[A];“新一轮西部大开发与贵州社会发展”学术研讨会暨贵州省社会学学会2010年学术年会论文集[C];2010年
2 周志鹏;郑亮亮;;我国优秀女子短道速滑运动员500米起跑技术的运动学分析[A];第十三届全国运动生物力学学术交流大会论文汇编[C];2009年
相关重要报纸文章 前10条
1 中信证券首席经济学家 诸建芳 ;中国城市化步入第二个加速阶段[N];江苏经济报;2012年
2 通讯员 张煜;东三县工业化进程进入加速阶段[N];昌吉日报;2008年
3 李佐军 国务院发展研究中心资源与环境政策研究所;中国进入“城镇化加速阶段后半场”[N];中国经济时报;2014年
4 记者 张牡霞 秦菲菲 编辑 梁伟;城市化进入加速阶段 明年达48%[N];上海证券报;2009年
5 徐走 贺耀堂 王春楠;我市城镇化率达36%[N];连云港日报;2005年
6 本报记者 张莉;深圳前海金融创新将进入加速阶段[N];中国证券报;2013年
7 韩洁;城镇化发展进入加速阶段[N];经济参考报;2004年
8 张牡霞 秦菲菲;城市化进入加速阶段 房地产业长期利好[N];济宁日报;2010年
9 本报记者 司建楠;我国工业化进入中期加速阶段[N];中国工业报;2009年
10 宋时飞;假如去世博学“治堵”[N];中国经济导报;2010年
相关博士学位论文 前1条
1 于佳彬;短跑加速阶段与最大速度阶段生物力学特征研究[D];上海体育学院;2016年
相关硕士学位论文 前1条
1 刘维雄;滑块轴承加速阶段下润滑性能的理论仿真与实验研究[D];中北大学;2015年
,本文编号:1399463
本文链接:https://www.wllwen.com/shoufeilunwen/sklbs/1399463.html