温室气体监测仪全过程定标软件开发与实现

发布时间:2018-01-14 02:04

  本文关键词:温室气体监测仪全过程定标软件开发与实现 出处:《中国科学技术大学》2017年硕士论文 论文类型:学位论文


  更多相关文章: 温室气体监测仪 定标软件 在轨光谱定标不确定度


【摘要】:温室气体监测仪采用空间外差干涉技术,能有效探测759nm~2058nm波段大气高分辨率吸收光谱信息,用于反演大尺度范围上的大气主要温室气体浓度含量数据,达到监测全球范围内温室气体含量变化的目的。定量化反演的前提是要有高精度观测光谱数据,定标化反演的本质就是通过迭代计算实测谱与模拟谱之间差异的最小化。因此,观测光谱数据的误差将会大大降低反演精度,定标就是为了修正这种仪器测量误差,从载荷发射前到在轨运行整个寿命周期内全过程定标贯穿始终。按照温室气体监测仪定标阶段划分,全过程定标可分为实验室定标和在轨星上定标。实验室定标是在实验室条件下模拟温室气体监测仪在轨运行环境,对仪器的性能进行全面的检测和标定,定标精度最高,为温室气体监测仪在轨工作及温室气体反演提供了重要参数,也为星上定标提供了初始参考。但由于在轨运行环境条件状态与实验室有差异,使得实验定标系数应用于在轨条件会引入误差,为了长期地监测载荷响应的衰减,及时修正仪器各项性能参数,还需开展在轨星上定标工作。温室气体监测仪定标软件就是为了满足温室气体监测仪定标业务需要所设计的复杂系统,它包括了数据预处理、实验室光谱定标、实验室辐射定标、在轨光谱定标和在轨辐射定标。论文利用软件工程的设计思想对软件系统的开发和实现进行了相关研究。首先,依据定标需求,分析了温室气体监测仪定标软件的功能需求、性能需求以及接口需求,并设计了软件总体业务流程。其次,根据模块化、分层化的设计思想,对系统进行了模块划分;采用面向对象、自顶而下的设计方法,设计了软件架构和界面主框架;再根据现有定标相关算法,详细设计了每个模块的功能和人机交互界面。最后,按照软件详细设计,实现了软件开发,并利用实测数据和模拟数据对软件的各个模块进行了测试,测试结果表明温室气体监测仪定标软件可满足定标任务常态化、业务化的应用需求。论文还研究了在轨光谱定标不确定度影响因素,得出在轨光谱定标主要受定标光源不确定度影响的结论,为后续温室气体监测仪在轨光谱定标算法的改进提供了参考。
[Abstract]:Using spatial heterodyne interferometry, the greenhouse gas monitor can effectively detect the high resolution absorption spectrum information of the atmosphere at the wavelength of 759 nm ~ (m) ~ (-1) ~ 2058 nm. It can be used to retrieve the concentration data of the main greenhouse gases in the large scale to monitor the change of the greenhouse gas content in the global scope. The premise of quantitative inversion is to have high precision observation spectral data. The essence of calibrated inversion is to minimize the difference between measured and simulated spectra through iterative calculation. Therefore, the error of observed spectral data will greatly reduce the inversion accuracy. Calibration is to correct the measuring error of this instrument, the whole process of calibration runs throughout the whole life cycle from the launch of the load to the on-orbit operation, and is divided according to the calibration stage of the greenhouse gas monitor. The whole process of calibration can be divided into laboratory calibration and on-orbit calibration. The laboratory calibration is to simulate the operating environment of greenhouse gas monitor in orbit under the laboratory conditions, and to comprehensively test and calibrate the performance of the instrument. The calibration accuracy is the highest, which provides important parameters for the on-orbit operation of the greenhouse gas monitor and greenhouse gas inversion, as well as the initial reference for the on-board calibration. In order to monitor the attenuation of load response for a long time, the performance parameters of the instrument can be corrected in time. The calibration software of greenhouse gas monitor is a complex system designed to meet the requirement of calibration of greenhouse gas monitor, which includes data preprocessing and spectrum calibration in laboratory. Laboratory radiation calibration, on-orbit spectral calibration and in-orbit radiation calibration. This paper uses the design idea of software engineering to study the development and implementation of the software system. First, according to the calibration requirements. The functional requirements, performance requirements and interface requirements of the calibration software for the greenhouse gas monitor are analyzed, and the overall business process of the software is designed. Secondly, according to the modular, hierarchical design idea. The system is divided into modules. The software architecture and interface main frame are designed by using the object-oriented and top-down design method. According to the existing calibration algorithms, the function of each module and man-machine interface are designed in detail. Finally, according to the detailed design of the software, the software development is realized. The software modules are tested with the measured data and simulation data. The test results show that the calibration software of greenhouse gas monitor can meet the normalization of the calibration task. The paper also studies the influence factors of on-orbit spectral calibration uncertainty, and draws the conclusion that the in-orbit spectral calibration is mainly affected by calibration light source uncertainty. It provides a reference for the improvement of the spectral calibration algorithm of the greenhouse gas monitor in orbit.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP216;TP311.52

【参考文献】

相关期刊论文 前10条

1 黄文薪;张黎明;司孝龙;曹兴家;朱雪梅;李孟凡;;星上反射率定标原理及其精度保持方法研究[J];光学学报;2016年06期

2 黄文薪;张黎明;司孝龙;徐伟伟;邹鹏;王戟翔;朱雪梅;;太阳漫反射板衰减监测辐射计的设计及性能评估[J];光学精密工程;2016年04期

3 李孟凡;徐伟伟;邹鹏;张黎明;孟炳寰;杨本永;洪津;乔延利;;比值辐射计响应特性[J];光学学报;2016年02期

4 路京选;宋文龙;曲伟;付俊娥;;跨时空观下的遥感应用新视野[J];遥感学报;2015年06期

5 施家定;张黎明;曹兴家;徐伟伟;韩慧达;王戟翔;;星上定标漫反射板设计研究[J];光学学报;2015年08期

6 赵敏杰;司福祺;陆亦怀;王煜;汪世美;江宇;周海金;刘文清;;基于谱线匹配技术的星载成像光谱仪星上光谱定标方法研究[J];光谱学与光谱分析;2015年07期

7 李双;裘桢炜;王相京;;星载大气主要温室气体监测仪杂光模拟分析[J];红外与激光工程;2015年02期

8 李占峰;王淑荣;黄煜;于向阳;;紫外臭氧垂直探测仪高精度在轨光谱定标方法研究[J];光学学报;2013年02期

9 周海金;刘文清;司福祺;赵敏杰;江宇;薛辉;;星载大气痕量气体差分吸收光谱仪光谱定标技术研究[J];光谱学与光谱分析;2012年11期

10 郑小兵;;高精度卫星光学遥感器辐射定标技术[J];航天返回与遥感;2011年05期

相关博士学位论文 前2条

1 王宏博;推扫式可见光/近红外成像光谱仪的在轨光谱定标与偏振校正技术研究[D];中国科学院研究生院(上海技术物理研究所);2016年

2 李占峰;紫外高光谱臭氧探测仪在轨定标方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2014年

相关硕士学位论文 前1条

1 苏丽娟;成像光谱仪分光技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2006年



本文编号:1421514

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1421514.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3c138***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com