基于改进相关向量机的单绕组磁悬浮开关磁阻电机无位置传感器控制研究
本文关键词:基于改进相关向量机的单绕组磁悬浮开关磁阻电机无位置传感器控制研究 出处:《江苏大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 磁悬浮 开关磁阻电机 无位置传感器 相关向量机 高速数字系统
【摘要】:高速磁悬浮开关磁阻电机(BSRM)是磁轴承和开关磁阻电机相结合的产物,具有简单耐用、性能可靠、高功率密度、高容错性等优点,能够很好地适应高速、重载等各种恶劣环境,在飞轮储能系统、多电/全电飞机、分布式发电系统、不间断电源(UPS)、电动/混合动力驱动等应用领域有着十分广阔的前景。BSRM运行控制包含悬浮控制和旋转控制两个组成部分,而稳定悬浮和可靠旋转的前提在于转子位移和位置的实时高精度检测。获得转子位置信号的传统方式是在电机上安装位置传感器,但位置传感器的存在不仅降低了BSRM结构简单的优势,而且限制了电机固有高速性能的发挥。因此,探索新型的无位置传感器技术是BSRM目前研究的重要方向,意义重大。本文以12/8三相单绕组磁悬浮开关磁阻电机(SWBSRM)作为研究对象,对电机数学模型构建,无位置传感器径向位移自检测,电机无位置传感器运行控制和高速数字系统设计等方面进行了研究。具体研究工作和相关成果如下:(1)分析了12/8极SWBSRM的结构和工作原理,基于等效磁路法和虚位移法推导了电感矩阵和磁链方程,给出了电机转矩和径向悬浮力的数学模型,并利用Ansoft Maxwell 2D软件验证了所构建模型的准确性,为建立基于相关向量机的转子径向位移模型奠定基础。(2)引入相关向量机(RVM),并采用差分进化(DE)算法对RVM组合核函数参数进行了优化,推导基于改进RVM的单绕组BSRM转子位置模型。通过自检测系统中检测信号与位移信号的对比验证基于改进RVM无位移传感器自检测方法的可行性。(3)设计基于悬浮系统的鲁棒PID控制器,并基于电流等效法提出了电机电流的控制算法,研究了SWBSRM无位置传感器运行控制系统,并通过Matlab/simulink进行仿真验证。仿真结果表明,所提出的控制策略对电机无位置传感器运行有很好的控制效果,且系统响应速度较快。(4)采用DSP为主控制器,结合FPGA系统集成度高,灵活可靠的优点,构建12/8极SWBSRM高速数字系统;并设计了功率变换电路、电流电压检测电路和转子位置检测电路等硬件模块,为接下来进一步实验做好了准备。
[Abstract]:High speed switched reluctance motor (SRM) is the product of the combination of magnetic bearing and switched reluctance motor, which has the advantages of simple and durable, reliable performance, high power density, high fault tolerance and so on. Can well adapt to high speed, heavy load and other adverse environment, in the flywheel energy storage system, multi-electric / all-electric aircraft, distributed generation systems, uninterrupted power supply (ups). The application field of electric / hybrid power drive has a very broad prospect. BSRM operation control includes two parts: suspension control and rotation control. The premise of stable suspension and reliable rotation is real-time and high-precision detection of rotor displacement and position. The traditional way to obtain rotor position signal is to install position sensor on the motor. However, the existence of position sensor not only reduces the advantages of simple BSRM structure, but also limits the inherent high-speed performance of the motor. Exploring a new type of position sensorless technology is an important research direction of BSRM. In this paper, 12/8 three-phase single-winding switched reluctance motor (SRM) is taken as the research object. For the mathematical model of the motor, the position sensorless radial displacement self-detection. In this paper, the sensorless operation control of the motor and the design of high-speed digital system are studied. The specific research work and related results are as follows: 1) the structure and working principle of the 12/8 pole SWBSRM are analyzed. Based on the equivalent magnetic circuit method and the virtual displacement method, the inductance matrix and the flux chain equation are derived, and the mathematical models of the motor torque and radial suspension force are given. The veracity of the model is verified by Ansoft Maxwell 2D software. In order to establish the radial displacement model of rotor based on correlation vector machine (RVM), the correlation vector machine (RVM) is introduced, and the parameters of RVM combined kernel function are optimized by using differential evolution (DE) algorithm. The rotor position model of single winding BSRM based on improved RVM is derived. The feasibility of the improved RVM sensorless self-detection method is verified by comparing the detection signal with the displacement signal in the self-detection system. 3) robust PID controller based on suspension system is designed. Based on the current equivalent method, the control algorithm of motor current is proposed, and the position sensorless operation control system of SWBSRM is studied. The simulation results by Matlab/simulink show that the proposed control strategy has a good control effect on the sensorless operation of the motor. DSP is adopted as the main controller, and the high speed digital system of 12/8 pole SWBSRM is constructed by combining the advantages of high integration, flexibility and reliability of FPGA system. The hardware modules, such as power conversion circuit, current and voltage detection circuit and rotor position detection circuit, are designed to prepare for further experiments.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM352;TP273
【参考文献】
相关期刊论文 前10条
1 朱志莹;孙玉坤;张仰飞;周云红;王正齐;;单绕组磁悬浮开关磁阻电机电磁分析与优化设计[J];电机与控制应用;2015年12期
2 朱志莹;孙玉坤;李祖明;周云红;王正齐;;单绕组磁悬浮开关磁阻电动机非线性解耦控制[J];微特电机;2015年10期
3 项倩雯;嵇小辅;孙玉坤;张新华;杨泽斌;;单绕组磁悬浮开关磁阻电机的原理与解耦控制[J];电机与控制学报;2012年11期
4 庄铮;邓智泉;曹鑫;赵丽丹;;无轴承开关磁阻全周期发电机输出功率的建模与优化控制[J];电工技术学报;2012年07期
5 周云红;孙玉坤;嵇小辅;黄永红;;磁悬浮开关磁阻电机径向位移自检测[J];中国电机工程学报;2012年06期
6 张倩影;邓智泉;杨艳;;无轴承开关磁阻电机转子质量偏心补偿控制[J];中国电机工程学报;2011年21期
7 项倩雯;孙玉坤;张新华;;磁悬浮开关磁阻电机建模与参数优化设计[J];电机与控制学报;2011年04期
8 杨钢;邓智泉;曹鑫;罗建震;王晓琳;;无轴承开关磁阻电机绕组电流超前角计算方法[J];南京航空航天大学学报;2009年02期
9 杨钢;邓智泉;曹鑫;罗建震;王晓琳;;无轴承开关磁阻电机平均悬浮力控制策略[J];航空学报;2009年03期
10 曹鑫;邓智泉;杨钢;杨艳;王晓琳;;无轴承开关磁阻电机麦克斯韦应力法数学模型[J];中国电机工程学报;2009年03期
相关博士学位论文 前2条
1 杨钢;无轴承开关磁阻电动机的基础研究[D];南京航空航天大学;2008年
2 刘羡飞;磁悬浮开关磁阻电机基本参数与控制方法的研究[D];江苏大学;2008年
相关硕士学位论文 前3条
1 徐振耀;一种新颖的12/14混合定子极型无轴承开关磁阻电机的设计与控制[D];沈阳工业大学;2012年
2 周云红;磁悬浮开关磁阻电机非理想状态的数学模型及解耦控制[D];江苏大学;2010年
3 贺子鸣;基于支持向量机的开关磁阻电机无位置传感器控制[D];天津大学;2007年
,本文编号:1423939
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1423939.html