基于喷泉码加解密算法研究
发布时间:2018-03-07 14:26
本文选题:喷泉码 切入点:密钥长度 出处:《武汉纺织大学》2017年硕士论文 论文类型:学位论文
【摘要】:在当今这个信息时代,信息贯穿我们整个社会、经济、文化等,这些信息与我们的利益紧密相关,信息的安全性日益受到人们关注,怎么确保信息安全是当前人们最需要解决的问题之一。而传统的对称加密算法是针对大容量数据加密算法,保证其信息的安全性,例如DES加密算法的安全性不高,容易破解。网络数据是通过喷泉码来传输数据,为了保证数据传输的可靠性,喷泉码采用随机化编码原理。为了提高加密算法的安全性,本文将将喷泉码的随机化编码应用于加密算法,本论文提出基于喷泉码加密算法(FEA),其采用对称加密算法。FEA的密钥继承喷泉码的随机化编码特性,加密密钥对原始数据进行随机化循环移位运算和迭代异或运算,其结果再与加密密钥进行密钥扰乱异或运算,获得密文数据。研究分析,FEA的密钥具有唯一性和随机性,且随机化循环移位、迭代异或运算、密钥扰乱异或运算增加加密算法的复杂性,共进行n轮迭代加密算法,因此,FEA的安全性是比较高的。FEA的密钥长度是可变的(可扩展的),随着密钥长度增长,其熵越大,密码的破解难度越大,信息越安全。FEA的密钥长度是可变的,而传统加密算法的密钥长度是固定的,用户想根据信息的重要程度设置其相应的密钥长度,即重要信息设置较长的密钥或非重要信息设置较短的密钥,因此FEA比传统加密算法更适合用户有效地管理信息与密钥。实验证明,FEA通过表的形式进行加密运算,极大降低了加密算法的计算量,极大降低了加密时间,且FEA的加密时间低于传统加密算法的加密时间,FEA的加密效率高于传统加密算法的加密效率,FEA满足了用户对大文件加密效率的需求。本文通过穷举法和超级计算机来破译加密算法的密码,FEA的密码长度是可变的(可扩展的),随着密码长度的增长,破译加密算法的密钥时间变的更长,信息的安全性也更高。
[Abstract]:In this information age, information runs through our whole society, economy, culture and so on. These information are closely related to our interests, and the security of information has been paid more and more attention to by people. How to ensure the information security is one of the most important problems that people need to solve at present. The traditional symmetric encryption algorithm is aimed at the large capacity data encryption algorithm to ensure the security of its information, such as the security of DES encryption algorithm is not high. The network data is transmitted by fountain code. In order to ensure the reliability of data transmission, fountain code adopts random coding principle, in order to improve the security of encryption algorithm, In this paper, the randomization coding of fountain code is applied to encryption algorithm. In this paper, a new encryption algorithm based on fountain code is proposed, which adopts symmetric encryption algorithm .FEA to inherit the randomization of fountain code. The encryption key performs random cyclic shift operation and iterative XOR operation on the original data. The result of the encryption key scrambles the XOR operation with the encryption key and obtains the ciphertext data. This paper studies and analyzes the uniqueness and randomness of the key of FEA. Moreover, random cyclic shift, iterative XOR operation, key scrambling XOR operation increase the complexity of encryption algorithm, and carry out n round iterative encryption algorithm. Therefore, the security of FEA is relatively high. The key length of FEA is variable. With the increase of key length, the greater the entropy, the more difficult it is to break the password, and the more secure the information is, the more the key length of FEA is variable. However, the key length of the traditional encryption algorithm is fixed. The user wants to set the key length according to the importance of the information, that is, the important information sets the long key or the non-important information sets the shorter key. Therefore, FEA is more suitable for users to manage information and keys effectively than traditional encryption algorithms. And the encryption time of FEA is lower than that of traditional encryption algorithm. The encryption efficiency of FEA is higher than that of traditional encryption algorithm. The password length of the FEA to decipher the encryption algorithm is variable (Extensible, as the password length grows, The key time of the decryption encryption algorithm becomes longer, and the security of information is also higher.
【学位授予单位】:武汉纺织大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP309.7
【参考文献】
相关期刊论文 前10条
1 高家利;;一种Raptor码编码技术的改进算法[J];电视技术;2015年03期
2 马蕾;李云玮;刘建平;;对称密钥高识别率虚假认证的改进K协议实现[J];科技通报;2014年08期
3 李湘锋;赵有健;全成斌;;对称密钥加密算法在IPsec协议中的应用[J];电子测量与仪器学报;2014年01期
4 张伟;雷维嘉;谢显中;;一种基于反馈的Raptor码编码改进方案[J];河南科技大学学报(自然科学版);2013年05期
5 石井;吴哲;谭璐;王昊鹏;王娜;;RSA数据加密算法的分析与改进[J];济南大学学报(自然科学版);2013年03期
6 邵明珠;李保华;;基于改进椭圆加密算法的网络加密技术[J];科技通报;2012年10期
7 付永贵;马尚才;;一种改进的对称密钥动态生成算法及应用[J];计算机系统应用;2011年06期
8 卜晓燕;张根耀;郭协潮;;基于AES算法实现对数据的加密[J];电子设计工程;2009年03期
9 林元乖;;网络加解密算法AES分析[J];微计算机信息;2007年18期
10 罗祖玲;;基于DES算法的数据库加密[J];装备制造技术;2007年06期
,本文编号:1579673
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1579673.html