蛙跳算法的改进及其应用研究

发布时间:2018-03-23 07:04

  本文选题:蛙跳算法 切入点:支持向量回归机 出处:《新疆大学》2017年硕士论文 论文类型:学位论文


【摘要】:蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)自提出以来,引起学者的广泛关注,并在部分工程领域得到了成功的应用。SFLA算法在解决高维问题时收敛速度较为缓慢且容易陷入局部最优,为了改善SFLA算法的搜索性能,本文通过对其内部寻优结构分析,提出了几种改进的SFLA算法,并应用于氧化还原电位(Oxidation Reduction Potential,ORP)预测以及作业车间调度优化问题中。本文的主要研究工作如下:1)为了提高SFLA在求解高维问题时的收敛速度以及避免陷入局部最优,提出了基于局部寻优策略改进的ISFLA(Improved Shuffled Frog Leaping Algorithm)和与教学算法(Teaching-Learning-Based Optimization Algorithm)相结合的TLBO-SFLA两种改进算法。在ISFLA算法的寻优过程中,分别引入混沌序列对种群初始化,扩大了初始种群的搜索范围;引入粒子群的局部更新策略,加强了种群内部的信息交流;引入反向学习,增加了算法搜索后期解的多样性,降低了陷入局部最优的概率。在TLBO-SFLA算法中,则是将每个子种群看作一个班级来进行学习,最优个体“老师”通过“教”的方式提升班级的整体水平,学生之间的相互学习过程可以更好的实现差异化学习。选取测试函数对所提两种改进算法进行测试,实验结果表明所提改进算法收敛速度更快寻优精度更高。2)ORP作为细菌活性的重要评价指标,对ORP的精准预测有利于实现对氧化提金过程关键参数的及时调控。为了实现ORP的预测,建立了支持向量回归机模型对ORP进行预测,并选用改进的蛙跳算法对预测模型的关键参数进行优化,以达到较高的预测精度。选取新疆某金矿的实际生产数据建立预测模型,结果表明,基于改进蛙跳算法优化的支持向量回归机ORP预测精度更高。3)提出了可用于求解作业车间调度优化的基于工序编码的OSFLA(Optimized Shuffled Frog Leaping Algorithm)算法,选取标准的调度问题进行仿真测试,实验结果表明,OSFLA算法不仅可以求出最优解,而且搜索速度更快。
[Abstract]:Since it was put forward, the leapfrog Frog Leaping algorithm has attracted wide attention of scholars, and it has been successfully applied in some engineering fields. The convergence rate of .SFLA algorithm is slow and it is easy to fall into local optimum when solving the problem of high dimension. In order to improve the search performance of SFLA algorithm, this paper proposes several improved SFLA algorithms by analyzing its internal optimization structure. And it is applied to the oxidation-reduction potential Reduction potential orp prediction and job shop scheduling optimization problem. The main work of this paper is as follows: 1) in order to improve the convergence speed of SFLA in solving high dimensional problems and avoid falling into local optimum. Two improved algorithms, ISFLA(Improved Shuffled Frog Leaping algorithm based on local optimization strategy and TLBO-SFLA algorithm combined with Teaching-Learning-Based Optimization algorithm, are proposed. In the process of ISFLA optimization, chaotic sequences are introduced to initialize the population. The search range of initial population is enlarged, the local updating strategy of particle swarm is introduced, and the information exchange within population is strengthened. The diversity of the late solution of search algorithm is increased by introducing reverse learning. The probability of falling into local optimum is reduced. In the TLBO-SFLA algorithm, each subgroup is treated as a class to learn, and the optimal individual "teacher" improves the overall level of the class by "teaching". The process of mutual learning between students can better achieve differential learning. Select the test function to test the proposed two improved algorithms. The experimental results show that the improved algorithm has faster convergence speed and higher precision. 2ORP is an important evaluation index of bacterial activity. The accurate prediction of ORP is helpful to realize the timely control of the key parameters in the process of oxidizing gold extraction. In order to realize the prediction of ORP, The support vector regression model is established to predict ORP, and the improved leapfrog algorithm is used to optimize the key parameters of the prediction model to achieve a higher prediction accuracy. The actual production data of a gold mine in Xinjiang are selected to establish the prediction model. The results show that the ORP prediction accuracy of SVM based on improved leapfrog algorithm is higher. 3) A OSFLA(Optimized Shuffled Frog Leaping algorithm which can be used to solve job shop scheduling optimization is proposed. The standard scheduling problem is selected for simulation test. The experimental results show that the OSFLA algorithm can not only find the optimal solution, but also search faster.
【学位授予单位】:新疆大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18

【参考文献】

相关期刊论文 前10条

1 王洋;刘志珍;;基于蛙跳模糊算法的Jiles Atherton铁心磁滞模型参数确定[J];电工技术学报;2017年04期

2 王玉昆;党金梗;;基于KPCA与ILSFA-LSSVM的浮选加药控制模型[J];控制工程;2017年02期

3 杨静宗;王晓东;吴建德;;基于改进SFLA-LSSVM的矿浆管道临界淤积流速预测[J];云南大学学报(自然科学版);2017年01期

4 张晓琳;张冲;杨涛;;基于改进布谷鸟算法的火焰图像阈值分割算法[J];微电子学与计算机;2017年01期

5 南新元;曾庆凯;孟宪强;;基于改进蛙跳算法优化的支持向量回归机ORP预测[J];新疆大学学报(自然科学版);2016年04期

6 常小刚;赵红星;;基于三角函数搜索因子的混合蛙跳算法[J];计算机工程与科学;2016年11期

7 李娜;南新元;刘烨;;基于改进教学算法优化WNN的ORP预测[J];计算机工程与设计;2016年08期

8 肖莹莹;林廷宇;李伯虎;侯宝存;施国强;;混合蛙跳算法自适应参数调整改进策略[J];系统工程与电子技术;2016年08期

9 刘宏;王其涛;夏未君;;优化混合蛙跳算法的WSN三维定位方法[J];计算机工程与应用;2017年02期

10 张强;李盼池;;自适应分组混沌云模型蛙跳算法求解连续空间优化问题[J];控制与决策;2015年05期

相关博士学位论文 前4条

1 赵转哲;混合蛙跳算法的改进及在旋转机械故障诊断中的应用研究[D];东南大学;2016年

2 程军;基于生物行为机制的粒子群算法改进及应用[D];华南理工大学;2014年

3 李骞;含砷金矿生物预氧化提金基础研究[D];中南大学;2007年

4 杨松荣;含砷难处理金矿石生物氧化提金基础与工程化研究[D];中南大学;2004年

相关硕士学位论文 前3条

1 李汉琛;基于支持向量机理论的股指期货量化交易策略研究[D];浙江大学;2016年

2 李伟;基于数据驱动的氧化还原电位软测量技术研究[D];新疆大学;2015年

3 苑洪晶;协同强化含砷金矿生物预氧化的研究[D];中南大学;2013年



本文编号:1652392

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1652392.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3dd7c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com