飞机油箱内窥形貌建模与特征分析
本文选题:飞机油箱 切入点:图像采集 出处:《中国民航大学》2017年硕士论文
【摘要】:传统的飞机油箱检查方式是人工检查方式,工作人员往往需要钻入环境恶劣的油箱内部作业,危险性高且效率低下。为实现飞机油箱内部结构状态的视觉检测,课题对基于图像的飞机油箱内窥形貌建模方法及基于特征分析的缺陷检测方法进行研究,对提高飞机油箱检查效率,保证工作人员人身安全具有重要意义。第一,研究了飞机油箱内窥形貌全景图建模和缺陷检测过程中的图像获取问题。根据飞机油箱内部的结构特点及飞机油箱检修的需求,设计了飞机油箱内窥形貌观测系统,来完成图像采集;针对飞机油箱内窥形貌观测系统存在几何变形的问题,进行标定及畸变校正;研究了基于图像的飞机油箱内窥形貌全景图模型的三种投影方法。第二,设计了飞机油箱内窥形貌全景图建模过程中的图像拼接方案。拼接过程首先要对飞机油箱内窥图像进行特征点检测、初匹配和筛选;针对飞机油箱内窥图像的配准过程实质上属于不同平面内的场景匹配问题,研究了一种基于结构相似度的飞机油箱内窥图像配准算法;并研究了图像拼接效果的评价指标。第三,设计了基于特征分析的飞机油箱内窥图像缺陷判别方法。利用基于缺陷特征向量的判别方法判断飞机油箱图像中有无缺陷,而后根据复合特征分析方法找出缺陷分类依据并判断缺陷类别,最后采用基于运动恢复结构的单目定位算法对飞机油箱内部目标区域进行定位,为工作人员维修油箱提供参考。最后,对飞机油箱内窥形貌观测系统软、硬件平台进行了简要说明,并分别对本文所研究方法进行实验分析,验证了飞机油箱内窥形貌建模方法的有效性与缺陷识别方法的正确性。
[Abstract]:The traditional inspection method of aircraft fuel tank is manual inspection. The workers often need to drill into the interior of the fuel tank, which is dangerous and inefficient. In order to realize the visual inspection of the internal structure of the aircraft fuel tank, In this paper, the image based image modeling method of aircraft fuel tank and the defect detection method based on feature analysis are studied. It is of great significance to improve the efficiency of aircraft fuel tank inspection and ensure the personal safety of the staff. First, In this paper, the problem of image acquisition in the process of image modeling and defect detection of aircraft fuel tank topography is studied. According to the structural characteristics of aircraft fuel tank and the requirements of aircraft fuel tank inspection and repair, an aircraft fuel tank morphology observation system is designed. In order to achieve image acquisition, calibration and distortion correction are carried out in view of the problem of geometric deformation in the observation system of aircraft fuel tank morphology. Three projection methods for the panoramic image model of aircraft fuel tank endoscope topography based on image are studied. Second, The image splicing scheme in the modeling process of aircraft fuel tank topography panorama is designed. Firstly, the feature point detection, initial matching and screening of the aircraft fuel tank endoscope image are carried out. In view of the fact that the registration process of aircraft fuel tank endoscope image belongs to the scene matching problem in different planes, a new image registration algorithm for aircraft fuel tank endoscope image based on structural similarity is studied in this paper. The evaluation index of image stitching effect is also studied. Thirdly, an image defect discrimination method based on feature analysis is designed to judge whether there is any defect in the image of aircraft fuel tank by using the discriminant method based on defect feature vector. Then, according to the composite feature analysis method, the defect classification basis is found and the defect category is judged. Finally, a monocular localization algorithm based on motion recovery structure is used to locate the target area inside the aircraft fuel tank. Finally, the software and hardware platform of the observation system for the morphology of the aircraft fuel tank is briefly described, and the experimental analysis of the methods studied in this paper is carried out. The validity of the modeling method and the correctness of the defect recognition method are verified.
【学位授予单位】:中国民航大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V228.11;TP391.41
【参考文献】
相关期刊论文 前10条
1 柯圣财;赵永威;李弼程;彭天强;;基于卷积神经网络和监督核哈希的图像检索方法[J];电子学报;2017年01期
2 黄伟国;胡大盟;杨剑宇;朱忠奎;;用于遮挡形状匹配的弦角特征描述[J];光学精密工程;2015年06期
3 王新华;黄玮;欧阳继红;;多探测器拼接成像系统实时图像配准[J];中国光学;2015年02期
4 宋宜容;严康文;;基于GoogleEarth的三维数字浏览系统的设计与实现[J];湖北大学学报(自然科学版);2015年02期
5 曹芳;秦川;;基于匹配点相似度引导采样的图像多平面检测[J];计算机应用研究;2015年03期
6 郭俊锋;刘鹏;焦国华;鲁远甫;吕建成;;三维测量工业内窥镜的双目光学系统[J];光学精密工程;2014年09期
7 刘震雄;;工业内窥镜在民用航空发动机维修中的应用[J];硅谷;2014年14期
8 禹璐;程德文;周伟;王涌天;刘小华;;硬性内窥镜光学系统的杂散光分析与抑制[J];光学精密工程;2014年03期
9 杨健;李若楠;黄晨阳;王刚;丁闯;;基于局部显著边缘特征的快速图像配准算法[J];计算机应用;2014年01期
10 高庆吉;王维娟;牛国臣;王磊;郑遵超;;飞机油箱检查机器人的仿生结构及运动学研究[J];航空学报;2013年07期
相关博士学位论文 前2条
1 李武斌;热轧圆钢表面缺陷视觉在线检测算法研究[D];山东大学;2013年
2 张光伟;立体内视测量技术研究[D];长春理工大学;2008年
相关硕士学位论文 前7条
1 陈强;一种用于零件检测的工业内窥镜研究[D];南京理工大学;2014年
2 聂兰苏;基于角点检测的图像拼接方法研究[D];西南大学;2013年
3 郑洋洋;基于内容的鞋图像检索的研究及应用[D];西南交通大学;2012年
4 赵强;基于视觉信息的移动机器人目标识别算法研究[D];山东大学;2012年
5 李少伟;双目立体工业内窥镜测量技术研究与系统实现[D];解放军信息工程大学;2012年
6 徐哲;小型工业内窥镜光机系统研究[D];长春理工大学;2011年
7 冉冉;基于单目视觉的移动机器人目标识别及抓取系统研究[D];北京交通大学;2010年
,本文编号:1670141
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1670141.html