基于机器视觉的飞机铆钉尺寸测量和缺陷检测系统的研究
本文选题:机器视觉 + 飞机铆钉 ; 参考:《陕西科技大学》2017年硕士论文
【摘要】:随着我国飞机制造业的快速发展,飞机铆钉作为飞机装配的必要零件被大量需求。为了保证飞机铆钉的质量,并区分产品的规格等级,需要运用一定的技术手段对铆钉产品进行尺寸测量和表面缺陷检测。然而目前大多飞机铆钉的生产厂家仍然使用传统的人工检测方法对产品进行检测,该检测方法存在着检测效率低、检测成本高的问题,已经不能满足现代工业快速、精密和稳定的测量及检测要求。基于机器视觉的工业检测技术因其具有非接触、在线检测、实时分析和判断的特点以及速度快、精度高、效率高的优点,目前已广泛应用于现代工业大生产的检测领域。本文将飞机铆钉作为检测对象,研制了一种基于机器视觉的飞机铆钉尺寸测量和表面缺陷检测系统。通过分析飞机铆钉的形状结构及表面缺陷的特征信息,对检测系统的硬件部分进行选型和设计,对飞机铆钉尺寸测量算法和表面缺陷检测算法进行研究,并对检测系统的软件部分进行了设计。本文的研究工作主要包括以下几个部分:(1)根据铆钉生产企业提出的对飞机铆钉检测的性能指标,结合工艺条件,设计了一个包括运动控制部分、图像采集和处理部分以及光源照明系统的机器视觉检测的硬件系统。选择合适的工业相机和光学镜头,对光源照明系统进行选型和设计,并对光源照明系统进行优化,以保证待测铆钉图像的质量。(2)对飞机铆钉尺寸测量算法进行了研究。根据飞机铆钉的测量需要及铆钉特征,确定的算法流程为:首先对原始铆钉图像进行预处理并对存在畸变的铆钉图像进行畸变补偿,确定铆钉图像的边缘图像,最后对铆钉图像的圆形部分采用最小二乘法拟合圆的方法进行测量,同时对铆钉图像的线型特征采用Hough变换的方法确定铆钉的尺寸参数。(3)对飞机铆钉表面缺陷检测算法进行了研究。表面缺陷检测算法主要由缺陷补偿算法和缺陷判断算法组成。缺陷补偿算法采用稀疏分解和聚类分析的方法获得飞机铆钉的模板图像,与待测飞机铆钉进行差分运算后提取铆钉缺陷图像,缺陷判断算法为根据铆钉缺陷图像的几何特征和形状特征判断缺陷的类型。(4)在Visual Studio 2010环境下,结合MFC和Open CV库实现了软件系统的设计。运用MFC设计友好的人机交互界面,采用模块化编程的思想,利用Open CV软件实现了飞机铆钉尺寸测量算法和表面缺陷检测算法,并通过数据库对飞机铆钉尺寸测量和缺陷检测的信息进行保存。最后,在完成系统构建、算法设计和软件实现的基础上,通过实验对本文所设计的检测系统的效果进行了验证。实验结果表明,本文所设计的基于机器视觉的飞机铆钉尺寸测量和表面缺陷检测系统能够实现飞机铆钉的高精度测量以及准确的缺陷判断,满足各方面的检测要求。
[Abstract]:With the rapid development of China's aircraft manufacturing industry, aircraft rivets are required as necessary parts for aircraft assembly. In order to ensure the quality of aircraft rivets and distinguish the grade of products, it is necessary to use certain technical means to measure the size and detect the surface defects of the rivets. However, at present, most manufacturers of aircraft rivets still use the traditional manual testing method to detect the products. The detection method has the problems of low efficiency and high cost, and can not meet the rapid development of modern industry. Precise and stable measurement and testing requirements. The industrial detection technology based on machine vision has been widely used in the field of modern industrial production because of its characteristics of non-contact, on-line detection, real-time analysis and judgment, as well as the advantages of high speed, high precision and high efficiency. In this paper, an aircraft rivet size measurement and surface defect detection system based on machine vision is developed. By analyzing the shape and structure of aircraft rivets and the characteristic information of surface defects, the hardware part of the detection system is selected and designed, and the algorithm of measuring the size of aircraft rivets and the algorithm of detecting surface defects are studied. And the software part of the detection system is designed. The research work of this paper mainly includes the following parts: 1) according to the performance index of the rivet inspection proposed by the rivet manufacturing enterprise and combining with the technological conditions, a motion control part is designed. The part of image acquisition and processing and the hardware system of machine vision detection of light source lighting system. Selecting the appropriate industrial camera and optical lens, selecting and designing the lighting system of light source, and optimizing the lighting system of light source to ensure the quality of rivet image to be tested, the algorithm of measuring the size of aircraft rivet is studied. According to the measurement requirements and rivet characteristics of aircraft rivets, the algorithm flow is as follows: first, preprocess the original rivets image and compensate the distortion of the rivet image with distortion, and determine the edge image of the rivet image. Finally, the circular part of the rivet image is measured by using the least square method to fit the circle. At the same time, the method of Hough transform is used to determine the size parameter of rivets, and the algorithm for detecting the surface defects of aircraft rivets is studied. The surface defect detection algorithm is mainly composed of defect compensation algorithm and defect judgment algorithm. The defect compensation algorithm uses sparse decomposition and clustering analysis to obtain the template image of the aircraft rivets, and then extracts the rivet defect image after differential operation with the aircraft rivet to be tested. The defect judgment algorithm is based on the geometric and shape features of rivets defect image to judge the type of defect. In Visual Studio 2010 environment, the software system is designed by combining MFC and Open CV library. Using MFC to design friendly man-machine interface, using the idea of modular programming, using Open CV software to realize the aircraft rivet size measurement algorithm and surface defect detection algorithm. The information of size measurement and defect detection of aircraft rivets is saved by database. Finally, on the basis of the system construction, algorithm design and software implementation, the effect of the detection system designed in this paper is verified by experiments. The experimental results show that the aircraft rivet size measurement and surface defect detection system based on machine vision can realize the high precision measurement and accurate defect judgment of aircraft rivets, and meet the requirements of all aspects of the detection.
【学位授予单位】:陕西科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V262.4;TP391.41
【参考文献】
相关期刊论文 前10条
1 周强;杜f^盟;王志强;;基于多尺度冗余字典稀疏分解的纸病图像背景补偿方法[J];中国造纸;2016年11期
2 张飞;单忠德;聂军刚;任永新;刘丰;;缸盖图像采集系统设计与图像滤波算法研究[J];仪表技术与传感器;2016年10期
3 乔兆亮;;基于非线性滤波的数字图像降噪算法[J];数字技术与应用;2016年06期
4 曾志强;祝锡晶;王俊元;李旭;林娣;;基于机器视觉的药筒传火孔可靠性测量方法研究[J];机械科学与技术;2016年01期
5 李伟伟;王莉;张琳;刘进;;基于改进二叉树支持向量机的多故障分类算法[J];探测与控制学报;2015年03期
6 张敏;金龙旭;李国宁;武奕楠;韩双丽;;基于直线特征的摄像机镜头畸变标定方法[J];光学学报;2015年06期
7 吴彬彬;汤勃;孔建益;王兴东;;MAS小波的钢板表面缺陷边缘检测的研究[J];机械设计与制造;2015年05期
8 冯斌;张富生;;密封螺母磁粉探伤方法[J];无损探伤;2015年01期
9 温利民;邹思思;吕凤虎;;偏度系数和峰度系数的信度估计[J];统计与决策;2015年03期
10 周江;任锟;帅英琦;陈英豪;;基于机器视觉的磁钢片缺陷检测研究[J];机电工程;2014年12期
相关博士学位论文 前1条
1 张秀芝;基于计算机视觉的机械零件几何量精密测量技术研究[D];吉林大学;2009年
相关硕士学位论文 前8条
1 王志强;基于C++的纸病图像数据的压缩感知的研究[D];陕西科技大学;2016年
2 宫振宁;基于机器视觉的生产线螺母装配检测技术研究[D];燕山大学;2014年
3 王明跃;视觉在线零件尺寸测量方法研究[D];天津理工大学;2014年
4 田冬凤;飞机机身铆接构件疲劳性能研究[D];南京航空航天大学;2013年
5 王凡;基于机器视觉的螺纹缺陷检测技术研究和系统开发[D];电子科技大学;2011年
6 高春霞;管轨运输中央控制系统原理样机软件的设计与实现[D];北京交通大学;2009年
7 杨彦景;摄像机标定与畸变图像矫正算法的设计与实现[D];东北大学;2008年
8 卢丽燕;基于机器视觉的精密尺寸测量技术[D];中北大学;2008年
,本文编号:1821915
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1821915.html