可穿戴电容式织物传感器的设计及性能研究
本文选题:织物传感器 + 织造 ; 参考:《武汉纺织大学》2017年硕士论文
【摘要】:随着科技的发展,智能纺织品作为一种新型纺织品,备受人们的关注。制备具有纺织结构的织物传感器是新型智能纺织研究的一个重要领域。导电纤维作为柔性传感器的主要材料,在智能纺织领域有着重要的应用。本论文首先对可穿戴电容式织物传感器的理论模型进行分析,在基于理论分析的基础上,对传感器的结构进行设计及开发。在电容式织物传感器的制备与性能研究的课题进展中,可穿戴电容式织物传感器的制备过程为:多组份皮芯结构导电包芯纱的纺制,通过改变纱线细度,纱线原料,本实验共纺制16组不同规格的纱线;浆纱,配备一定浓度的浆料,把纺制好的纱线进行上浆处理;织造,通过改变织造工艺中纱线原料、织物面积、织物经密与纱线细度这四个工艺参数,分别制备纱线原料为涤纶/不锈钢丝、涤纶/铜丝、棉/不锈钢丝、棉/铜丝,织物面积为15cm2、20cm2、25cm2、30cm2,织物经密为240/10cm、300/10cm、320/10cm、400/10cm、纱线细度为25tex、33tex、40tex、47tex共计64个不同工艺条件下的电容式织物传感器试样。并测试试样在频率为100Hz、120Hz、1000Hz、10kHz条件下以及在连续变化压力条件下的电容式织物传感器电容值的变化,对电容式织物传感器的性能进行测试分析与表征。可穿戴电容式织物传感器的性能测试结果表明:电容式织物传感器的织造工艺中纱线原料、织物面积、织物经密、纱线细度对单层电容式织物传感器的性能均有一定的影响,其规律为:随着织物面积的增大,电容式织物传感器的电容值总体随之增加;随着织物经密的增加,电容式织物传感器的电容值总体也随之增加;随着纱线细度的增加,电容式织物传感器的电容值总体呈下降趋势;随着测试频率的增加,电容式织物传感器的电容值总体也呈下降趋势,测试频率为100Hz时,电容值最大;随着外界压力的逐渐增大,电容式织物传感器的电容值总体也随之缓慢增加。棉织物传感器比涤纶织物传感器的电容值高一些。本课题旨在研究性能最佳的可穿戴电容式织物传感器,对可穿戴电容式织物传感器的发展有一定的理论和实际应用价值。
[Abstract]:With the development of science and technology, smart textiles, as a new type of textiles, have attracted people's attention. The preparation of textile sensors with textile structure is an important field of new intelligent textile research. As the main material of flexible sensor, conductive fiber has important application in intelligent textile field. Firstly, the theoretical model of wearable capacitive fabric sensor is analyzed in this paper. Based on the theoretical analysis, the structure of the sensor is designed and developed. In the research progress of the preparation and performance of capacitive fabric sensor, the fabrication process of wearable capacitive fabric sensor is as follows: spinning of conductive cored yarn with multicomponent leather core structure, changing yarn fineness, yarn raw material, In this experiment, 16 groups of yarns of different specifications were spun; sizing yarn, equipped with a certain concentration of sizing material, sizing the spun yarn; weaving, by changing the yarn raw material, fabric area in the weaving process, The yarn materials are polyester / stainless steel yarn, polyester / copper wire, cotton / stainless steel wire, cotton / copper wire, cotton / stainless steel wire, cotton / copper wire, cotton / stainless steel wire, cotton / copper wire, cotton / stainless steel wire, cotton / copper wire respectively. The fabric area is 15 cm 2, 20 cm 2, 25 cm 2, 30 cm 2, the warp density of the fabric is 240 / 10 cm ~ (-1) 300 / 10 cm ~ (-1) 320 / 10 cm ~ (10) / 400 / 10 cm, the yarn fineness is 25 textures, 33 textures, 40 textures, 47 Tex, and a total of 64 capacitive fabric sensor samples under different processing conditions. The capacitance values of capacitive fabric sensors were tested at the frequency of 100Hz / 120Hz / 100Hz / 10kHz and the continuous pressure. The properties of the capacitive fabric sensors were tested and characterized. The performance test results of wearable capacitive fabric sensor show that yarn raw material, fabric area, fabric warp density and yarn fineness have certain influence on the performance of single layer capacitive fabric sensor in weaving process of capacitive fabric sensor. The rules are as follows: with the increase of fabric area, the capacitance value of capacitive fabric sensor increases as a whole; with the increase of fabric warp density, the capacitance value of capacitive fabric sensor increases as a whole; with the increase of yarn fineness, The capacitance value of capacitive fabric sensor shows a downward trend in general. With the increase of testing frequency, the capacitance value of capacitive fabric sensor is also decreasing, and the capacitance value of capacitive fabric sensor is the largest when the test frequency is 100 Hz; with the increasing of external pressure, the capacitance value of capacitive fabric sensor increases gradually. The capacitance of capacitive fabric sensor increases slowly as a whole. Cotton fabric sensors have a higher capacitance than polyester fabric sensors. The purpose of this paper is to study wearable capacitive fabric sensor with the best performance, which has certain theoretical and practical application value for the development of wearable capacitive fabric sensor.
【学位授予单位】:武汉纺织大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212;TS106
【参考文献】
相关期刊论文 前10条
1 陈丽芸;侯成义;;穿戴新材料 编织大未来——东华大学纤维材料改性国家重点实验室[J];中国材料进展;2016年02期
2 杨青锋;;几种常见称重传感器技术特性及应用的介绍与分析[J];衡器;2015年05期
3 道恩;;可穿戴设备来了,你们准备好了吗?[J];个人电脑;2015年04期
4 肖俐;刘晓霞;翟云祁;;浅析智能纺织品特性的评价方法[J];棉纺织技术;2015年04期
5 葛传兵;;关于功能性纺织品发展的探讨[J];天津纺织科技;2015年01期
6 晓婷;;2016年智能服装将大量出现[J];中国纤检;2015年02期
7 侯玉群;莫黎昕;翟庆彬;李路海;;银纳米线电极微结构对柔性压力传感器灵敏度的影响[J];信息记录材料;2014年05期
8 王莹;孙俊杰;叶雷;;可穿戴传感器的特点与趋势[J];电子产品世界;2014年10期
9 邓南平;张如全;;智能纺织品及其发展趋势[J];现代丝绸科学与技术;2013年04期
10 龙宇;;适应纺企转型升级的高职外贸服装跟单复合型人才培养研究[J];轻纺工业与技术;2013年01期
相关硕士学位论文 前6条
1 侯玉群;柔性电容式应力传感器及其灵敏度影响因素研究[D];北京印刷学院;2015年
2 刘焘;涂碳纤维导电针织物的传感性能研究[D];浙江理工大学;2011年
3 涂睿;含泡沫填充复合材料加筋板非线性屈曲模拟试验方法研究[D];上海交通大学;2011年
4 廖丽芳;柔性可纺织涂碳纤维导电/传感性能研究[D];浙江理工大学;2010年
5 朱玲;PVDF位移传感器及其应用研究[D];哈尔滨工程大学;2009年
6 蒙茂洲;基于柔性硅基薄膜技术的智能服装的研究[D];华中科技大学;2007年
,本文编号:2006735
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2006735.html