工业AGV载物云台稳定性控制策略研究
本文选题:PID控制 + 模糊控制 ; 参考:《安徽工程大学》2017年硕士论文
【摘要】:近年来,伴随着计算机技术、互联网技术、工业自动化技术等快速发展和进步,载物云台在工业AGV研究领域受到广泛关注。多自由度载物云台在受到扰动时会发生角运动改变作业设备工作基准,目前针对云台的稳定性控制效果一般,因而如何更加有效地实现工业AGV载物云台稳定性控制,有效地隔离载体角运动以保证安装在平台上的设备作业坐标轴稳定,实现作业设备的准确定位成为一个新的研究课题。本文以三自由度工业AGV载物云台为研究对象,对载物云台各种稳定性控制策略进行了分析对比研究,开展了下面几项研究工作:论文首先分析了工业AGV载物云台的结构及其工作原理,并以三自由度工业AGV载物云台为例分析和阐述了坐标变换工作原理,进一步根据控制理论详细地建立了三自由度工业AGV载物云台的主要构成部件数学模型以及总体数学模型。其次,通过对三自由度工业AGV载物云台数学模型和常规PID控制算法的分析与研究,提出运用PID控制技术来实现对三自由度工业AGV载物云台的稳定性控制,由此设计并进行了仿真试验。然后针对常规PID控制参数固定不能适应随机变化的情况,转换思路提出运用模糊控制方法实现三自由度工业AGV载物云台的稳定性控制。根据系统工作特性选取了双输入单输出的模糊控制模型,设计49条模糊规则来对三自由度工业AGV载物云台进行实时控制,建立三自由度工业AGV载物云台模糊控制仿真模型进行试验。最后比对常规PID控制方法和模糊控制方法,设计一种融合两者控制优点的新方法-模糊PID混合控制方法来对三自由度工业AGV载物云台进行稳定性控制。建立三自由度工业AGV载物云台模糊PID混合控制数学模型并进行仿真,结果表明,该控制方法不但能够大大缩短系统调节时间和提高系统稳态精度,还能够实现参数自整定以适应不同环境,具有很好的控制性能。
[Abstract]:In recent years, with the rapid development and progress of computer technology, Internet technology, industrial automation technology and so on, the carrier cloud head has received extensive attention in the field of industrial AGV research. When the multi-degree-of-freedom (MDOF) carrier cloud head is disturbed, the angular motion will change the working standard of the operating equipment. At present, the stability control effect of the cloud head is general, so how to realize the stability control of the industrial AGV carrier cloud head more effectively. It is a new research topic to isolate the angular movement of the carrier effectively to ensure the stability of the operating coordinate axis of the equipment installed on the platform and to realize the accurate positioning of the operating equipment. In this paper, three degrees of freedom (DOF) industrial AGV platform is used as the research object, and various stability control strategies of the platform are analyzed and compared. The following research works are carried out: firstly, the structure and working principle of industrial AGV carrier cloud head are analyzed, and the working principle of coordinate transformation is analyzed and expounded by taking the three-freedom industrial AGV carrier cloud head as an example. According to the control theory, the mathematical model of the main components and the overall mathematical model of the three-degree-of-freedom industrial AGV platform are established in detail. Secondly, through the analysis and research on the mathematical model of the three-degree-of-freedom industrial AGV platform and the conventional pid control algorithm, a pid control technique is proposed to realize the stability control of the three-degree-of-freedom industrial AGV platform. The simulation experiment is designed and carried out. Then, in view of the fact that the fixed parameters of conventional pid control can not adapt to the random change, the fuzzy control method is proposed to realize the stability control of the cloud head of industrial AGV with three degrees of freedom. According to the working characteristics of the system, the fuzzy control model of double input and single output is selected, and 49 fuzzy rules are designed to control the three-degree-of-freedom industrial AGV cloud head in real time. A fuzzy control simulation model of three degrees of freedom for industrial AGV is established. Finally, compared with the conventional pid control method and the fuzzy control method, a new control method, fuzzy-PID hybrid control method, is designed to control the stability of the three-degree-of-freedom industrial AGV cloud head. A fuzzy pid hybrid control model of three degrees of freedom for industrial AGV is established and simulated. The results show that the control method can not only shorten the adjusting time of the system but also improve the steady-state precision of the system. It can also realize parameter self-tuning to adapt to different environments and has good control performance.
【学位授予单位】:安徽工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 罗庆生;计润达;俞鸿飞;王柯宇;田恩彤;靳芬;;新型电动球形云台的数学建模与理论分析[J];机械设计与研究;2016年05期
2 孙帅;焦子韵;刘晓宇;姜晓栋;陈丹丹;朱海荣;;智能AGV小车控制系统设计[J];南通职业大学学报;2016年01期
3 陈尚;张世军;穆星科;陈永强;;MEMS陀螺技术国内外发展现状简述[J];传感器世界;2016年04期
4 崔梦丹;;基于STM32的伺服云台天线控制系统[J];数字技术与应用;2016年02期
5 焦淑红;智扬;;基于FPGA的高阶FIR滤波器设计[J];电子科技;2015年08期
6 吴衍记;;高精度光纤陀螺发展现状及对策[J];导航定位与授时;2015年04期
7 赵新华;王璞;陈晓红;;投球机器人模糊PID控制[J];智能系统学报;2015年03期
8 赵凤姣;厉虹;;PID控制器改进方法研究[J];控制工程;2015年03期
9 李敬一;王会彬;;基于PID算法的步进电机位置控制[J];军民两用技术与产品;2015年07期
10 王朋;刘林;陈哲;翟永杰;周杰联;;基于改进DE算法的PID参数整定及其应用[J];动力工程学报;2015年03期
相关硕士学位论文 前2条
1 郭阳志;基于ARM的增稳云台姿态控制系统研究[D];湖北工业大学;2015年
2 武彬;模糊自整定PID控制器的设计与开发[D];华北电力大学;2015年
,本文编号:2012305
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2012305.html