温室黄瓜病虫害监测预警系统研究与实现
本文选题:温室病虫害 + 黄瓜 ; 参考:《山东农业大学》2017年硕士论文
【摘要】:日光温室是当前中国设施蔬菜生产的主流,室内温度适宜,相对湿度大、叶片湿润时间长是普遍现象,致使霜霉病等叶部病害及蚜虫、蓟马等害虫呈多发趋重态势,经常造成严重减产,甚至绝收。部分农户凭经验定期施药,或者初见症状就增加施药次数,不仅花费高,更易造成农药残留超标和环境污染,难以适应社会对食品安全、环境友好的要求。因此,在日光温室蔬菜快速发展的背景下,亟需构建病害预警模型及系统,以提高病害防治的预见性,减少农药使用量。本文以控制日光温室黄瓜病虫害需求为出发点,研究设计并开发了以日光温室黄瓜为例的温室蔬菜病虫害监测预警系统,实现了对日光温室黄瓜的信息化管理以及对病虫害的智能化预警。本文主要完成以下工作:(1)搜集当前温室蔬菜病虫害的研究成果以及发展现状,阐述开发温室蔬菜病虫害监测预警系统的必要性以及实用价值。(2)进行系统开发的可行性分析,介绍温室蔬菜病虫害监测预警的主要实现方式,通过基于ASP.NET平台,利用SqlServer2008、VS2010等开发工具,采用JavaScript、C#、html、css等编程语言,进一步借助jQuery、EasyUI、BootStrap等开发框架,整体上采用MVC架构,构建了温室黄瓜病虫害监测预警系统。(3)通过将收集整理的田间试验数据、温室基本信息、生产履历、实时环境监测、病虫害信息采集等数据,以及移动端采集的数据进行整合,建立日光温室黄瓜病虫害警兆指标数据库。(4)集成设施环境、病虫害自动监测和预警模型,研发设施蔬菜病虫害智能监测预警系统,将系统对接到农业物联网平台,进行应用示范。(5)建立温室黄瓜病虫害监测预警微信公众平台,可以使用户随时随地查询、浏览温室数据,监测温室内病虫害发生情况,同时支持数据上传。该系统的开发主要结合当前蔬菜病虫害预警系统的发展与研究现状,充分运用现有的预测分析技术,通过需求调研分析及田间试验,对温室黄瓜生长过程进行全程追踪,监测温室黄瓜的生长环境数据以及生长状态,从而对可能发生的病害、虫害进行预测,构建病虫害预测体系,建立温室黄瓜病虫害监测预警系统,以方便在今后温室黄瓜种植中投入使用。
[Abstract]:Solar greenhouse is the mainstream of vegetable production in China at present. It is a common phenomenon that the indoor temperature is suitable, the relative humidity is high, and the leaf wetting time is long, which results in many leaf diseases such as downy mildew and aphid, thrips and other pests. Often cause serious reduction in production, or even the end of income. Some farmers apply pesticide regularly based on their experience, or increase the frequency of application at the first sight of symptoms, which is not only expensive, but also easy to cause excessive pesticide residues and environmental pollution, so it is difficult to adapt to the social requirements of food safety and environmental friendliness. Therefore, under the background of the rapid development of vegetables in solar greenhouse, it is urgent to construct disease warning model and system to improve the predictability of disease prevention and control and to reduce the use of pesticides. Based on the requirement of controlling cucumber diseases and insect pests in solar greenhouse, a greenhouse vegetable pest monitoring and warning system was designed and developed in this paper. The information management of cucumber in solar greenhouse and the intelligent early warning of diseases and insect pests were realized. This article mainly completes the following work: 1) collects the current greenhouse vegetable disease and insect pest research achievement and the development present situation, expounds the necessity and the practical value of the greenhouse vegetable disease and insect pest monitoring and early warning system, carries on the feasibility analysis of the system development. This paper introduces the main ways to realize the monitoring and warning of greenhouse vegetable diseases and insect pests. By using ASP. Net platform, using SQL Server 2008 / VS2010 and other development tools, and using the programming language such as JavaScript C#htmlCSS, the author makes further use of the development framework such as jQuery EasyUIYUIYUISAL Boot trap and so on, and adopts MVC architecture as a whole. A greenhouse cucumber disease and insect pest monitoring and early warning system is constructed. The data collected from field experiments, greenhouse basic information, production resume, real-time environmental monitoring, pest and disease information collection, and mobile data collection are integrated. The integrated facility environment, automatic monitoring and early warning model of diseases and pests, the intelligent monitoring and early warning system of vegetable diseases and insect pests in greenhouse were established, and the system was connected to the agricultural Internet of things platform. The public platform of monitoring and early warning of cucumber diseases and insect pests in greenhouse can be set up, which can make users search anywhere at any time, browse greenhouse data, monitor the occurrence of diseases and pests in greenhouse, and support data uploading at the same time. The development of the system mainly combined with the current development and research status of vegetable disease and insect pests early warning system, fully using the existing prediction and analysis technology, through demand investigation and field experiments, the whole growth process of greenhouse cucumber was tracked. Monitoring the growth environment data and growth status of greenhouse cucumber, so as to predict the possible diseases and insect pests, construct the pest and disease prediction system, and establish the greenhouse cucumber pest monitoring and warning system. In order to facilitate the use of greenhouse cucumber in the future.
【学位授予单位】:山东农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP277
【参考文献】
相关期刊论文 前10条
1 隋媛媛;王庆钰;于海业;;基于叶绿素荧光光谱指数的温室黄瓜病害预测[J];光谱学与光谱分析;2016年06期
2 马宁;孟志军;王培;梁勇;;农作物病虫害预报方法研究综述[J];黑龙江八一农垦大学学报;2016年01期
3 谢利胜;;基于掌上微信的公司WAP微网站应用平台对接[J];信息通信;2015年06期
4 向昌盛;;最小二乘支持向量机在害虫预测中的应用[J];湖南科技大学学报(自然科学版);2012年02期
5 冯艳;;SQL Server数据库运用及其性能优化分析[J];软件导刊;2012年03期
6 孙朝云;;病虫害预测模型比较[J];黑龙江科技信息;2011年28期
7 李红平;魏振方;郭卫霞;;小麦白粉病的数学模型预测[J];湖北农业科学;2011年17期
8 向昌盛;周子英;张林峰;;支持向量机在害虫发生量预测中的应用[J];生物信息学;2011年01期
9 程海霞;王丛梅;帅克杰;李毓富;宋军芳;王建民;;山西省晋城市小麦病虫害气象预报模型[J];江苏农业科学;2010年06期
10 徐富强;郑婷婷;方葆青;;基于广义回归神经网络(GRNN)的函数逼近[J];巢湖学院学报;2010年06期
相关博士学位论文 前2条
1 籍延宝;农业主要病虫害监测预警系统通用平台的开发及初步应用[D];中国农业大学;2014年
2 隋媛媛;基于叶绿素荧光光谱分析的温室黄瓜病虫害预警方法[D];吉林大学;2012年
相关硕士学位论文 前8条
1 刘厚;微信公众互动平台的设计与实现[D];湖南大学;2016年
2 吴德宝;关系与非关系数据库应用对比研究[D];东华理工大学;2015年
3 张霞;番茄生长过程分析与诊断专家系统的研究与实现[D];西南交通大学;2014年
4 张铸国;基于WEB标准零件库信息管理系统研究与实现[D];大连交通大学;2009年
5 王应天;基于ASP.NET的Ajax组件的设计与封装[D];沈阳理工大学;2009年
6 彭占武;基于图像处理和模式识别技术的黄瓜病害识别研究[D];吉林农业大学;2007年
7 郭春强;漯河市小麦主要病害的预测模型研究[D];河南农业大学;2007年
8 沈文君;温室白粉虱在不同黄瓜品种上种群动态与防治措施模拟系统的研制[D];山西农业大学;2001年
,本文编号:2039519
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2039519.html