LTE网络位置指纹定位技术研究与定位系统设计
发布时间:2018-06-24 21:08
本文选题:位置指纹定位 + LTE网络 ; 参考:《西南交通大学》2017年硕士论文
【摘要】:随着移动设备的数量不断增加,手机制造商和服务提供商正在努力向用户推出新的功能和服务,其中基于位置的服务(LBS)获得了移动用户和服务提供商的更多关注。LTE网络的快速发展使得人们对智能终端的定位需求也越来越高。位置指纹定位技术仅仅采用无线信号特征就可以提供定位服务,方法简便而且能够克服建筑物的干扰,因此成为近年来研究的热点之一。本文结构安排如下:首先,分析国内外关于位置指纹定位技术的研究成果,对LTE网络中的定位技术进行总结分析。其次,结合位置指纹定位技术的特点对LTE网络定位架构进行完善,设计了一种在网络中嵌入位置指纹定位功能的LTE网络定位架构,并详细设计了 LTE网络下位置指纹定位系统功能模块结构、位置指纹定位逻辑功能、位置指纹定位类型的LPP消息结构以及位置指纹定位流程。再次,分别利用四种不同滤波方式对指纹数据的随机性进行了预处理。针对指纹数据库数据量庞大的问题,本文提出了一种指纹数据动态二次搜索算法,大大降低了定位响应时间。然后分别从噪声、指纹间隔、K值等影响定位性能的主要因素对最近邻法(NN)、K最近邻法(KNN)、K加权最近邻法(WKNN)以及贝叶斯概率法进行了仿真分析,针对WKNN算法提出了一种基于皮尔逊相关系数的改进匹配定位算法(ImWKNN),结果表明改进算法在定位精度、稳定性方面均有提升。然后,在算法研究的基础上本文设计了一种室外位置指纹定位演示系统,该系统采用客户端/服务器模式,Android客户端进行位置指纹采集与定位结果显示,定位服务器进行指纹存储与定位计算。最后,搭建系统的测试环境,建立离线阶段的指纹数据库,验证系统的定位功能及性能,测试结果表明在指纹间隔约为20米的情况下,定位精度基本满足E911的定位要求。
[Abstract]:As the number of mobile devices continues to grow, mobile phone manufacturers and service providers are working to introduce new features and services to users. Among them, location-based services (LBS) have attracted more attention from mobile users and service providers. With the rapid development of LTE network, people need more and more intelligent terminals. Location fingerprint location technology can provide location services only by using wireless signal features. The method is simple and can overcome the interference of buildings, so it has become one of the hot research topics in recent years. The structure of this paper is as follows: firstly, this paper analyzes the research results of location fingerprint location technology at home and abroad, and summarizes and analyzes the location technology in LTE network. Secondly, according to the characteristics of location fingerprint location technology, the LTE network location architecture is improved, and a LTE network location architecture with location fingerprint location function embedded in the network is designed. The function module structure of the location fingerprint location system, the location fingerprint location logic function, the LPP message structure of the location fingerprint location type and the location fingerprint location flow are designed in detail. Thirdly, four different filtering methods are used to preprocess the randomness of fingerprint data. In order to solve the problem of large amount of data in fingerprint database, a dynamic quadratic search algorithm for fingerprint data is proposed in this paper, which greatly reduces the time of location response. Then, the paper simulates the nearest neighbor method (NN) and K-weighted nearest neighbor method (WKNN) and Bayesian probability method, respectively, from the main factors of noise, fingerprint interval K value and so on, which affect the location performance of the nearest neighbor method (NN) and the K-nearest neighbor method (KNN). An improved matching location algorithm based on Pearson correlation coefficient (ImWKNN) is proposed for WKNN algorithm. The results show that the improved algorithm can improve the accuracy and stability of the algorithm. Then, based on the research of the algorithm, an outdoor location fingerprint location demonstration system is designed in this paper. The system adopts the client / server mode and Android client to collect the location fingerprint and display the location result. The location server carries on the fingerprint storage and the localization computation. Finally, the testing environment of the system is set up, and the fingerprint database in off-line stage is established to verify the location function and performance of the system. The test results show that the positioning accuracy can basically meet the requirements of E911 when the fingerprint interval is about 20 meters.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.5
【参考文献】
相关期刊论文 前2条
1 张明华;张申生;曹健;;无线局域网中基于信号强度的室内定位[J];计算机科学;2007年06期
2 王蕾;廖鑫;姚锐;黄帮明;;LTE复杂场景下的无线传播模型校正研究[J];电视技术;2014年23期
,本文编号:2062962
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2062962.html