基于“空-地”机器人的纺织厂除尘系统研究
发布时间:2018-07-09 12:40
本文选题:主除尘器 + 副除尘器 ; 参考:《武汉纺织大学》2017年硕士论文
【摘要】:随着现代化纺织技术的进步和日益扩大的规模化生产线发展,纺织工艺对环境的要求日趋提高。众所周知,纺织工艺是一个产生高度污染的过程,不同的生产工序和设备加工都将产生大量的粉尘。纺织厂若不采取除尘措施,灰尘和大量的含尘空气必将广为扩散,严重污染车间和周围环境,直接危害职工健康和影响产品质量。我国大部分纺织生产车间的粉尘浓度均值在2.0mg/m3以下,基本符合国家最低排放标准。但在清扫、搬运和存储等过程中,一些未被完全清理的粉尘在外力作用下再次扩散,对设备及人员造成二次伤害,这一客观存在的因素制约着纺织技术的进一步提高。基于以上现状,针对地面清洁机器人在清扫过程中引起的二次污染问题,构建了以地面除尘设备为主、空中除尘设备为辅的空地相结合的纺织厂除尘系统。该系统采用“地车-空飞”的工作模式,将空中的四旋翼飞行器和地面清洁机器人两种不同种类的移动机器人组成异构移动机器人协作系统,并通过信息共享和行为协调机制,实现“空-地”间的协同配合,实现最大程度地有效除尘,从而达到降低二次污染目的。针对系统作业需求,研究了主除尘器和副除尘器的硬件结构以及芯片的选型方案;为实现“空-地”机器人之间的信息共享和行为协调,构建了“空-地”除尘系统的协作平台;将“空-地”除尘系统的运动规划问题分为两个阶段:第一阶段,准备阶段。通过对地面主除尘器和空中副除尘器的运动学分析,引入三次样条多项式规划四旋翼飞行器跟踪地面清洁机器人的轨迹,同时,选择四旋翼飞行器的航向和位置为控制变量,利用变分哈密顿和欧拉-拉格朗日方程快速生成最优解,设计最佳轨迹控制器,实现副除尘器到达地面移动目标上空固定高度的最佳轨迹控制;第二阶段,除尘阶段。除尘任务开始后,四旋翼飞行器以恒定的高度飞行,并与地面清洁机器人保持一定水平距离,在跟踪控制器的作用下,跟踪地面清洁机器人的轨迹。根据系统中目标跟踪的要求和基本条件,采用李雅普诺夫第二法设计目标跟踪控制器。通过MATLAB软件对最优轨迹控制算法和目标跟踪控制器进行仿真。仿真结果表明,空中副除尘器能快速飞行至地面移动目标上空的固定高度,能有效跟踪地面主除尘器的轨迹。
[Abstract]:With the progress of modern textile technology and the development of scale production line, the requirement of textile technology to the environment is increasing day by day. As we all know, textile technology is a highly polluting process, different production processes and equipment will produce a large amount of dust. If the textile mill does not take measures to remove dust, dust and a large amount of dust-bearing air will spread widely, which will seriously pollute the workshop and the surrounding environment, directly endanger the health of the workers and directly affect the quality of the products. The average dust concentration of most textile workshops in China is below 2.0mg/m3, which basically conforms to the national minimum emission standard. However, in the process of cleaning, handling and storage, some dusts which have not been completely cleaned are diffused again under the action of external force, which causes secondary injury to equipment and personnel. This objective existing factor restricts the further improvement of textile technology. Based on the above situation, aiming at the secondary pollution caused by the ground cleaning robot in the cleaning process, the dust removal system of textile mill is constructed, which is composed of ground dust removal equipment and air dust removal equipment. The system adopts the mode of "ground vehicle and air flight". Two different kinds of mobile robots are composed of four rotors and cleaning robots in the air, and the cooperation system of heterogeneous mobile robots is made up of information sharing and behavior coordination mechanism. In order to achieve the goal of reducing secondary pollution, the cooperation between air and ground can be realized, and the dust removal can be achieved to the greatest extent. In order to realize the information sharing and behavior coordination among the "space-ground" robots, the hardware structure of the main precipitator and the secondary precipitator and the selection of the chip are studied in order to meet the operational requirements of the system. The cooperative platform of "air-ground" dust removal system is constructed, and the motion planning of "air-ground" dust removal system is divided into two stages: the first stage and the preparation stage. Based on the kinematics analysis of the ground main dust collector and the air auxiliary dust collector, the cubic spline polynomial is introduced to plan the track of the four rotors to track the ground cleaning robot. At the same time, the course and position of the four rotors are selected as the control variables. By using variational Hamiltonian and Euler-Lagrangian equations, the optimal solution is generated quickly, and the optimal trajectory controller is designed to realize the optimal trajectory control of the secondary precipitator to the fixed altitude above the moving target on the ground; the second stage is the dust removal stage. After the dust removal task began, the four-rotor aircraft flew at a constant altitude and kept a certain horizontal distance from the ground cleaning robot, and tracked the track of the ground cleaning robot under the action of the tracking controller. According to the requirements and basic conditions of target tracking in the system, the second method of Lyapunov is used to design the target tracking controller. The optimal trajectory control algorithm and target tracking controller are simulated by MATLAB software. The simulation results show that the air pair precipitator can quickly fly to the fixed altitude above the moving target on the ground and can effectively track the track of the main dust collector on the ground.
【学位授予单位】:武汉纺织大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS108;TP242
【参考文献】
相关期刊论文 前10条
1 黄肖肖;曹凯;王杰;;基于空-地协同的轨迹规划方法[J];公路交通科技;2016年11期
2 吕二忠;刘涛;严春;徐明;;综掘工作面高压喷雾降尘技术研究[J];煤炭工程;2016年03期
3 张文君;盛维涛;袁宇鹏;李晓龙;;智能轮式机器人离散模糊自适应PID控制研究[J];制造业自动化;2015年08期
4 卢超月;夏继强;叶呈洋;;STM32的磁导航自主导引车通用驱动器设计[J];单片机与嵌入式系统应用;2015年04期
5 张廷鹏;;某弹性无纺布生产车间空调系统设计[J];广东化工;2014年19期
6 严平锋;凌志浩;蒋炜;;步进电机的控制与检测系统的设计与实现[J];自动化仪表;2014年04期
7 王东署;王佳;;未知环境中移动机器人环境感知技术研究综述[J];机床与液压;2013年15期
8 王文庆;张涛;龚娜;;基于多传感器融合的自主移动机器人测距系统[J];计算机测量与控制;2013年02期
9 刘睿R,
本文编号:2109391
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2109391.html